· Цепная ядерная реакция

.

В β + -распаде протон превращается в нейтрон, позитрон и нейтрино :

.

Таким образом, в отличие от β − -распада , β + -распад не может происходить в отсутствие внешней энергии, поскольку масса самого нейтрона больше массы протона. β + -распад может случаться только внутри ядер, где абсолютное значение энергии связи дочернего ядра больше энергии связи материнского ядра. Разность между двумя этими энергиями идёт на превращение протона в нейтрон, позитрон и нейтрино и на кинетическую энергию получившихся частиц.

Во всех случаях, когда β + -распад энергетически возможен (и протон является частью ядра с электронными оболочками), он сопровождается процессом электронного захвата , при котором электрон атома захватывается ядром с испусканием нейтрино:

.

Но если разность масс начального и конечного атомов мала (меньше удвоенной массы электрона, то есть 1022 кэВ), то электронный захват происходит, не сопровождаясь конкурирующим процессом позитронного распада; последний в этом случае запрещён законом сохранения энергии .

Когда протон и нейтрон являются частями атомного ядра , эти процессы распада превращают один химический элемент в другой. Например:

(β − распад), (β + распад), (электронный захват).

Бета-распад не меняет число нуклонов в ядре A , но меняет только его заряд Z . Таким образом может быть введён набор всех нуклидов с одинаковым A ; эти изобарные нуклиды могут превращаться друг в друга при бета-распаде. Среди них некоторые нуклиды (по крайней мере, один) бета-стабильны, поскольку они представляют собой локальные минимумы излишка массы: если такое ядро имеет (A , Z ) числа, соседние ядра (A , Z −1) и (A , Z +1) имеют больший излишек массы и могут распадаться посредством бета-распада в (A , Z ), но не наоборот. Необходимо заметить, что бета-стабильное ядро может подвергаться другим типам радиоактивного распада (альфа-распаду , например). Большинство изотопов, существующих в природных условиях на Земле, бета-стабильны, но существует несколько исключений с такими большими периодами полураспада , что они не успели исчезнуть за примерно 4,5 млрд лет, прошедшие с момента нуклеосинтеза . Например, 40 K , который испытывает все три типа бета-распада (бета-минус, бета-плюс и электронный захват), имеет период полураспада 1.277×10 9 лет.

Бета-распад можно рассматривать как переход между двумя квантовомеханическими состояниями, обусловленный возмущением, поэтому он подчиняется золотому правилу Ферми .

График Кюри

График Кюри (известен также как график Ферми) - диаграмма, используемая для изучения бета-распада. Это энергетическая зависимость квадратного корня из количества излучённых бета-частиц с данной энергией, делённая на функцию Ферми. Для разрешённых (и некоторых запрещённых) бета-распадов график Кюри линеен (прямая линия, наклонённая в сторону роста энергии). Если нейтрино имеют конечную массу, то график Кюри вблизи точки пересечения с осью энергии отклоняется от линейного, благодаря чему появляется возможность измерить массу нейтрино.

Двойной бета-распад

Некоторые ядра могут испытывать двойной бета-распад (ββ-распад), при котором заряд ядра меняется на две единицы. В самых практически интересных случаях такие ядра бета-стабильны (простой бета-распад энергетически запрещён), поскольку когда β- и ββ-распады оба разрешены, вероятность β-распада (обычно) намного больше, мешая исследованиям очень редких ββ-распадов. Таким образом, ββ-распад обычно изучается только для бета-стабильных ядер. Как и простой бета-распад, двойной бета-распад не меняет A ; следовательно, как минимум один из нуклидов с данным A должен быть стабильным по отношению как к простому, так и к двойному бета-распаду.

История

Исторически исследование бета-распада привело к первому физическому свидетельству существования нейтрино . В году Лиза Мейтнер и Отто Ган провели эксперимент, который показал, что энергии электронов, испускаемых при бета-распаде, имеют непрерывный, а не дискретный спектр. Это находилось в очевидном противоречии с законом сохранения энергии, поскольку получалось, что часть энергии терялась в процессах бета-распада. Вторая проблема заключалась в том, что спин атома азота -14 был равен 1, что противоречило предсказанию Резерфорда - ½. В известном письме, написанном в году, Вольфганг Паули предположил, что помимо электронов и протонов атомы содержат очень легкую нейтральную частицу, которую он назвал нейтроном. Он предположил, что этот «нейтрон» испускается при бета-распаде и раньше просто не наблюдался. В году

Альфа и бета-излучения в общем случае называются радиоактивными распадами. Это процесс, представляющий собой испускание из ядра, происходящий с огромной скоростью. В результате атом или его изотоп может превратиться из одного химического элемента в другой. Альфа и бета-распады ядер характерны для нестабильных элементов. К ним относятся все атомы с зарядовым числом больше 83 и массовым числом, превышающим 209.

Условия возникновения реакции

Распад, подобно другим радиоактивным превращениям, бывает естественным и искусственным. Последний происходит из-за попадания в ядро какой-либо посторонней частицы. Сколько альфа и бета-распада способен претерпеть атом - зависит лишь от того, как скоро будет достигнуто стабильное состояние.

При естественных обстоятельствах встречается альфа и бета-минус распады.

При искусственных условиях присутствует нейтронный, позитронный, протонный и другие, более редкие разновидности распадов и превращений ядер.

Данные названия дал занимавшийся изучением радиоактивного излучения.

Различие между стабильным и нестабильным ядром

Способность к распаду напрямую зависит от состояния атома. Так называемое "стабильное" или нерадиоактивное ядро свойственно нераспадающимся атомам. В теории наблюдение за такими элементами можно вести до бесконечности, чтобы окончательно убедиться в их стабильности. Требуется это для того, чтобы отделить такие ядра от нестабильных, которые имеют крайне долгий период полураспада.

По ошибке такой "замедленный" атом можно принять за стабильный. Однако ярким примером может стать теллур, а конкретнее, его изотоп с номером 128, имеющий в 2,2·10 24 лет. Этот случай не единичный. Лантан-138 подвержен полураспаду, срок которого составляет 10 11 лет. Этот срок в тридцать раз превышает возраст существующей вселенной.

Суть радиоактивного распада

Данный процесс происходит произвольно. Каждый распадающийся радионуклид приобретает скорость, являющуюся константой для каждого случая. Скорость распада не может измениться под влиянием внешних факторов. Неважно, будет происходить реакция под воздействием огромной гравитационной силы, при абсолютном нуле, в электрическом и магнитном поле, во время какой-либо химической реакции и прочее. Повлиять на процесс можно только прямым воздействием на внутренность атомного ядра, что практически невозможно. Реакция спонтанная и зависит лишь от атома, в котором протекает, и его внутреннего состояния.

При упоминании радиоактивных распадов часто встречается термин "радионуклид". Тем, кто не знаком с ним, следует знать, что данное слово обозначает группу атомов, которые имеют радиоактивные свойства, собственное массовое число, атомный номер и энергетический статус.

Различные радионуклиды применяются в технических, научных и прочих сферах жизнедеятельности человека. К примеру, в медицине данные элементы используются при диагностировании заболеваний, обработке лекарств, инструментов и прочих предметов. Имеется даже ряд лечебных и прогностических радиопрепаратов.

Не менее важным является и определение изотопа. Этим словом называют особую разновидность атомов. Они имеют одинаковый атомный номер, как у обычного элемента, однако отличное массовое число. Вызвано это различие количеством нейтронов, которые не влияют на заряд, как протоны и электроны, но меняют массу. К примеру, у простого водорода их имеется целых 3. Это единственный элемент, изотопам которого были присвоены названия: дейтерий, тритий (единственный радиоактивный) и протий. В остальных случаях имена даются в соответствии с атомными массами и основным элементом.

Альфа-распад

Это вид радиоактивной реакции. Характерен для естественных элементов из шестого и седьмого периода таблицы химических элементов Менделеева. В особенности для искусственных или трансурановых элементов.

Элементы, подверженные альфа-распаду

В число металлов, для которых характерен данный распад, относят торий, уран и прочие элементы шестого и седьмого периода из периодической таблицы химических элементов, считая от висмута. Также процессу подвергаются изотопы из числа тяжелых элементов.

Что происходит во время реакции?

При альфа-распаде начинается испускание из ядра частиц, состоящих из 2 протонов и пары нейтронов. Сама выделяемая частица является ядром атома гелия, с массой 4 единицы и зарядом +2.

В итоге появляется новый элемент, который расположен на две клетки левее исходного в периодической таблице. Такое расположение определяется тем, что исходный атом потерял 2 протона и вместе с этим - начальный заряд. В итоге масса возникшего изотопа на 4 массовые единицы уменьшается по сравнению с первоначальным состоянием.

Примеры

Во время такого распада из урана образуется торий. Из тория появляется радий, из него - радон, который в итоге дает полоний, и в конце - свинец. При этом в процессе возникают изотопы этих элементов, а не они сами. Так, получается уран-238, торий-234, радий-230, радон-236 и далее, вплоть до возникновения стабильного элемента. Формула такой реакции выглядит следующим образом:

Th-234 -> Ra-230 -> Rn-226 -> Po-222 -> Pb-218

Скорость выделенной альфа-частицы в момент испускания составляет от 12 до 20 тыс. км/сек. Находясь в вакууме, такая частица обогнула бы земной шар за 2 секунды, двигаясь по экватору.

Бета-распад

Отличие этой частицы от электрона - в месте появления. Распад бета возникает в ядре атома, а не электронной оболочке, окружающей его. Чаще всего встречается из всех существующих радиоактивных превращений. Его можно наблюдать практически у всех существующих в настоящее время химических элементов. Из этого следует, что у каждого элемента имеется хотя бы один подверженный распаду изотоп. В большинстве случаев в результате бета-распадапроисходит бета-минус разложение.

Протекание реакции

При данном процессе происходит выбрасывание из ядра электрона, возникшего из-за самопроизвольного превращения нейтрона в электрон и протон. При этом протоны за счет большей массы остаются в ядре, а электрон, называемый бета-минус частицей, покидает атом. И поскольку протонов стало больше на единицу, ядро самого элемента меняется в большую сторону и располагается справа от исходного в периодической таблице.

Примеры

Распад бета с калием-40 превращает его в изотоп кальция, который расположен справа. Радиоактивный кальций-47 становится скандием-47, который может превратиться в стабильный титан-47. Как выглядит такой бета-распад? Формула:

Ca-47 -> Sc-47 -> Ti-47

Скорость вылета бета-частицы составляет 0,9 от скорости света, равной 270 тыс. км/сек.

В природе бета-активных нуклидов не слишком много. Значимых из них довольно мало. Примером может послужить калий-40, которого в естественной смеси содержится лишь 119/10000. Также естественными бета-минус-активными радионуклидами из числа значимых являются продукты альфа и бета-распад урана и тория.

Распад бета имеет типичный пример: торий-234, который при альфа-распаде превращается в протактиний-234, а затем таким же образом становится ураном, но другим его изотопом под номером 234. Этот уран-234 вновь из-за альфа-распада становится торием, но уже иной его разновидностью. Затем этот торий-230 становится радием-226, который превращается в радон. И в той же последовательности, вплоть до таллия, лишь с различными бета-переходами назад. Заканчивается этот радиоактивный бета-распад возникновением стабильного свинца-206. Это превращение имеет следующую формулу:

Th-234 -> Pa-234 -> U-234 -> Th-230 -> Ra-226 -> Rn-222 -> At-218 -> Po-214 -> Bi-210 -> Pb-206

Естественными и значимыми бета-активными радионуклидами являются К-40 и элементы от таллия до урана.

Распад бета-плюс

Также существует бета-плюс превращение. Оно также называется позитронный бета-распад. В нем происходит испускание из ядра частицы под названием позитрон. Результатом становится превращение исходного элемента в стоящий слева, который имеет меньший номер.

Пример

Когда происходит электронный бета-распад, магний-23 становится стабильным изотопом натрия. Радиоактивный европий-150 становится самарием-150.

Возникшая реакция бета-распада может создать бета+ и бета- испускания. Скорость вылета частиц в обоих случаях равна 0,9 от скорости света.

Другие радиоактивные распады

Не считая таких реакций, как альфа-распад и бета-распад, формула которых широко известна, существуют и другие, более редкие и характерные для искусственных радионуклидов процессы.

Нейтронный распад . Происходит испускание нейтральной частицы 1 единицы массы. Во время него один изотоп превращается в другой с меньшим массовым числом. Примером может стать превращение лития-9 в литий-8, гелия-5 в гелий-4.

При облучении гамма-квантами стабильного изотопа йода-127 он становится изотопом с номером 126 и приобретает радиоактивность.

Протонный распад . Встречается крайне редко. Во время него происходит испускание протона, имеющего заряд +1 и 1 единицу массы. Атомный вес становится меньше на одно значение.

Любое радиоактивное превращение, в частности, радиоактивные распады, сопровождаются выделением энергии в форме гамма-излучения. Его называют гамма-квантами. В некоторых случаях наблюдается рентгеновское излучение, имеющее меньшую энергию.

Представляет собой поток гамма-квантов. Является электромагнитным излучением, более жестким, чем рентгеновское, которое применяется в медицине. В результате появляются гамма-кванты, или потоки энергии из атомного ядра. Рентгеновское излучение также является электромагнитным, но возникает из электронных оболочек атома.

Пробег альфа-частиц

Альфа-частицы с массой от 4 атомных единиц и зарядом +2 движутся прямолинейно. Из-за этого можно говорить о пробеге альфа-частиц.

Значение пробега зависит от изначальной энергии и колеблется от 3 до 7 (иногда 13) см в воздухе. В плотной среде составляет сотую долю от миллиметра. Подобное излучение не может пробить лист бумаги и человеческую кожу.

Из-за собственной массы и зарядового числа альфа-частица имеет наибольшую ионизирующую способность и разрушает все на пути. В связи с этим альфа-радионуклиды наиболее опасны для людей и животных при воздействии на организм.

Проникающая способность бета-частиц

В связи с малым массовым числом, которое в 1836 раз меньше протона, отрицательным зарядом и размером, бета-излучение оказывает слабое действие на вещество, через которое пролетает, но притом полет дольше. Также путь частицы не прямолинейный. В связи с этим говорят о проникающейся способности, которая зависит от полученной энергии.

Проникающие способности у бета-частиц, возникших во время радиоактивного распада, в воздухе достигают 2,3 м, в жидкостях подсчет ведется в сантиметрах, а в твердых телах - в долях от сантиметра. Ткани организма человека пропускают излучение на 1,2 см в глубину. Для защиты от бета-излучения может послужить простой слой воды до 10 см. Поток частиц с достаточно большой энергией распада в 10 Мэв почти весь поглощается такими слоями: воздух - 4 м; алюминий - 2,2 см; железо - 7,55 мм; свинец - 5,2 мм.

Учитывая малые размеры, частицы бета-излучения имеют малую ионизирующую способность по сравнении с альфа-частицами. Однако при попадании внутрь они намного опаснее, чем во время внешнего облучения.

Наибольшие проникающие показатели среди всех видов излучений в настоящее время имеет нейтронное и гамма. Пробег этих излучений в воздухе иногда достигает десятков и сотен метров, но с меньшими ионизирующими показателями.

Большинство изотопов гамма-квантов по энергии не превышают показателей в 1,3 МэВ. Изредка достигаются значения в 6,7 МэВ. В связи с этим для защиты от такого излучения используются слои из стали, бетона и свинца для кратности ослабления.

К примеру, чтобы десятикратно ослабить гамма-излучения кобальта, необходима свинцовая защита толщиной около 5 см, для 100-кратного ослабления потребуется 9,5 см. Бетонная защита составит 33 и 55 см, а водная - 70 и 115 см.

Ионизирующие показатели нейтронов зависят от их энергетических показателей.

При любой ситуации лучшим защитным методом от излучения станет максимальное отдаление от источника и как можно меньшее времяпрепровождение в зоне высокой радиации.

Деление ядер атомов

Под атомов подразумевается самопроизвольное, или под влиянием нейтронов, на две части, примерно равные по размерам.

Эти две части становятся радиоактивными изотопами элементов из основной части таблицы химических элементов. Начинаются от меди до лантаноидов.

Во время выделения вырывается пара лишних нейтронов и возникает избыток энергии в форме гамма-квантов, который гораздо больше, чем при радиоактивном распаде. Так, при одном акте радиоактивного распада возникает один гамма-квант, а во время акта деления появляется 8,10 гамма-квантов. Также разлетевшиеся осколки имеют большую кинетическую энергию, переходящую в тепловые показатели.

Высвободившиеся нейтроны способны спровоцировать разделение пары аналогичных ядер, если они расположены вблизи и нейтроны в них попали.

В связи с этим возникает вероятность возникновения разветвляющей, ускоряющейся цепной реакции разделения атомных ядер и создания большого количества энергии.

Когда такая цепная реакция находится под контролем, то её можно использовать в определённых целях. К примеру, для отопления или электроэнергии. Такие процессы проводятся на атомных электростанциях и реакторах.

Если потерять контроль над реакцией, то случится атомный взрыв. Подобное применяется в ядерном оружии.

В естественных условиях имеется только один элемент - уран, имеющий лишь один делящийся изотоп с номером 235. Он является оружейным.

В обыкновенном урановом атомном реакторе из урана-238 под влиянием нейтронов образуют новый изотоп под номером 239, а из него - плутоний, который является искусственным и не встречается в естественных условиях. При этом возникший плутоний-239 применяется в оружейных целях. Этот процесс деления атомных ядер является сутью всего атомного оружия и энергетики.

Такие явления, как альфа-распад и бета-распад, формула которых изучается в школе, широко распространенны в наше время. Благодаря данным реакциям, существуют атомные электростанции и многие другие производства, основанные на ядерной физике. Однако не стоит забывать про радиоактивность многих таких элементов. При работе с ними требуется специальная защита и соблюдение всех мер предосторожности. В противном случае это может привести к непоправимой катастрофе.

Ядра большинства атомов – это довольно устойчивые образования.

Однако ядра атомов радиоактивных веществ в процессе радиоактивного распада самопроизвольно превращаются в ядра атомов других веществ. Так в 1903 году Резерфорд обнаружил, что помещенный в сосуд радий через некоторое время превратился в радон. А в сосуде дополнительно появился гелий.

Альфа-распад

При альфа-распаде излучается α-частица (ядро

атома гелия). Из вещества с количеством протонов Z и нейтронов N в атомном ядре оно превращается в вещество с количеством протонов Z-2 и количеством нейтронов N-2, атомной массой А-4. То есть происходит смещение образовавшегося элемента на две клетки назад в периодической системе.

Альфа-распад – это внутриядерный процесс . В составе тяжелого ядра за счет сложной картины сочетания ядерных и электростатических сил образуется самостоятельная α-частица, которая выталкивается кулоновскими силами гораздо активнее остальных нуклонов. При определенных условиях она может преодолеть силы ядерного взаимодействия и вылететь из ядра.

Бета-распад

При бета-распаде излучается электрон (β-частица). В результате распада одного нейтрона на протон, электрон и антинейтрино, состав ядра увеличивается на один протон, а электрон и антинейтрино излучаются вовне. Соответственно,
образовавшийся элемент смещается в периодической системе на одну клетку вперед.

Пример β-распада:


Бета-распад – это внутринуклонный процесс . Превращение претерпевает нейтрон. Существует также бета-плюс-распад или позитронный бета-распад. При позитронном распаде ядро испускает позитрон и нейтрино, а элемент смещается при этом на одну клетку назад по периодической таблице. Позитронный бета-распад обычно сопровождается электронным захватом.

Гамма-распад


Гамма-распад – это излучение гамма-квантов ядрами в возбужденном состоянии, при котором они обладают большой по сравнению с невозбужденным состоянием энергией. В возбужденное состояние ядра могут приходить при ядерных реакциях либо при радиоактивных


распадах других ядер. Большинство возбужденных состояний ядер имеют очень непродолжительное время жизни – менее наносекунды.

Существуют распады с эмиссией нейтрона, протона, кластерная радиоактивность и некоторые другие, очень редкие виды распадов. Но превалирующие виды радиоактивности это альфа, бета и гамма распад.

Таблица распадов

Тип радиоактивности

Изменение заряда ядра Z

Изменение массового числа А

Характер процесса

Вылет α-частицы – системы двух протонов и двух нейтронов, соединенных воедино

Взаимные превращения в ядре нейтрона () и протона ()

β – -распад

β + -распад

Электронный захват (е – -или К-захват)

И – электронное нейтрино и антинейтрино

Спонтанное деление

Z – (1/2)A

A – (1/2)A

Деление ядра обычно на два осколка, имеющих приблизительно равные массы и заряды

История изучения радиоактивного излучения.
Э. Резерфорд обнаружил две составляющие этого излучения: менее проникающую, названную α- излучением, и более проникающую, названную - излучением. Третья составляющая урановой радиации, самая проникающая из всех, была открыта позже, в 1900 году, Полем Виллардом и названа по аналогии с резерфордовским рядом γ-излучением. Резерфорд и его сотрудники показали, что радиоактивность связана с распад

ом атомов (значительно позже стало ясно, что речь идет о распаде атомных ядер), сопровождающимся выбросом из них определенного типа излучений. Этот вывод нанес сокрушительный удар по господствовавшей в физике и химии концепции неделимости атомов.
В последующих исследованиях Резерфорда было показано, что α-излучение представляет собой поток α-частиц , которые являются не чем иным, как ядрами изотопа гелия 4 Не, а

β-излучение состоит из электронов и γ-излучение является потоком высокочастотных электромагнитных квантов , испускаемых атомными ядрами при переходе из возбужденных в более низколежащие состояния.
β-распада ядер . Теория этого явления была создана лишь в 1933 году Энрико Ферми, который использовал гипотезу Вольфганга Паули о рождении в β-распаде нейтральной частицы, имеющей близкую к нулю массу покоя и названной нейтрино . Ферми обнаружил, что β-распад обусловлен новым типом взаимодействия частиц в природе - "слабым" взаимодействием и связан с процессами превращения в родительском ядре нейтрона в протон с испусканием электрона е - и антинейтрино (β - -распад), протона в нейтрон с испусканием позитрона е + и нейтрино ν (β + -распад), а также с захватом протоном атомного электрона и испусканием нейтрино ν (электронный захват).
Четвертый вид радиоактивности, открытый в России в 1940 году
молодыми физиками Г.Н. Флеровым и К.А. Петржаком, связан со спонтанным делением ядер, в процессе которого некоторые достаточно тяжелые ядра распадаются на два осколка с примерно равными массами.
Но и деление не исчерпало всех видов радиоактивных превращений атомных ядер. Начиная с 50-х годов физики методично приближались к открытию протонной радиоактивности ядер. Для того чтобы ядро, находящееся в основном состоянии, могло самопроизвольно испускать протон, необходимо, чтобы энергия отделения протона от ядра была положительной. Но таких ядер в земных условиях не существует, и их необходимо было создать искусственно. К получению таких ядер были очень близки российские физики в Дубне, но протонную радиоактивность открыли в 1982 году немецкие физики в Дармштадте, использовавшие самый мощный в мире ускоритель многозарядных ионов.
Наконец, в 1984 году независимые группы ученых в Англии и России открыли кластерную радиоактивность некоторых тяжелых ядер, самопроизвольно испускающих кластеры - атомные ядра с атомным весом от 14 до 34.

  • экспозиционная доза
  • поглощённая доза
  • эквивалентная доза
  • эффективная эквивалентная доза

Радиоактивность

Это способность ядер атомов различных химических элементов разрушаться, видоизменяться с испусканием атомных и субатомных частиц высоких энергий. При радиоактивных превращениях, в подавляющем большинстве случаев, ядра атомов (а значит, и сами атомы) одних химических элементов превращаются в ядра атомов (в атомы) других химических элементов, либо один изотоп химического элемента превращается в другой изотоп того же элемента.

Атомы, ядра которых подвержены радиоактивному распаду или другим радиоактивным превращениям, называются радиоактивными .

Изотопы

(от греческих слов isos – «равный, одинаковый» и topos – «место»)

Это нуклиды одного химического элемента, т.е. разновидности атомов определенного элемента, имеющие одинаковый атомный номер, но разные массовые числа.

Изотопы обладают ядрами с одинаковым числом протонов и различным числом нейтронов и занимают одно и то же место в периодической системе химических элементов. Различают стабильные изотопы, которые существуют в неизменном виде неопределенно долго, и нестабильные (радиоизотопы), которые со временем распадаются.

Известно около 280 стабильных и более 2000 радиоактивных изотопов у 116 природных и искусственно полученных элементов .

Нуклид (от латинского nucleus – «ядро») – совокупность атомов с определенными значениями заряда ядра и массового числа.

Условные обозначения нуклида: , где X буквенное обозначение элемента, Z число протонов (атомный номер ), A сумма числа протонов и нейтронов (массовое число ).

Даже у самого первого в таблице Менделеева и самого лёгкого атома – водорода, в ядре которого только один протон (а вокруг него вращается один электрон), имеется три изотопа.

Радиоактивные превращения

Могут быть естественными, самопроизвольными (спонтанными) и искусственными. Спонтанные радиоактивные превращения – процесс случайный, статистический.

Все радиоактивные превращения сопровождаются, как правило, выделением из ядра атома избытка энергии в виде электромагнитного излучения .

Гамма-излучение – это поток гамма-квантов, обладающих большой энергией и проникающей способностью.

Рентгеновское излучение – это так же поток фотонов – обычно с меньшей энергией. Только «место рождения» рентгеновского излучения не ядро, а электронные оболочки. Основной поток рентгеновского излучения возникает в веществе при прохождении через него «радиоактивных частиц» («радиоактивного излучения» или «ионизирующего излучения»).

Основные разновидности радиоактивных превращений:

  • радиоактивный распад;
  • деление ядер атомов.

Это испускание, выбрасывание с огромными скоростями из ядер атомов «элементарных» (атомных, субатомных) частиц, которые принято называть радиоактивным (ионизирующим) излучением .

При распаде один изотоп данного химического элемента превращается в другой изотоп того же элемента.

Для естественных (природных) радионуклидов основными видами радиоактивного распада являются альфа- и бета-минус-распад.

Названия «альфа » и «бета » были даны Эрнестом Резерфордом в 1900 году при изучении радиоактивных излучений.

Для искусственных (техногенных) радионуклидов, кроме этого, характерны также нейтронный, протонный, позитронный (бета-плюс) и более редкие виды распада и ядерных превращений (мезонный, К-захват, изомерный переход и др.).

Альфа-распад

Это испускание из ядра атома альфа-частицы, которая состоит из 2 протонов и 2 нейтронов.

Альфа-частица имеет массу 4 единицы, заряд +2 и является ядром атома гелия (4He).

В результате испускания альфа-частицы образуется новый элемент, который в таблице Менделеева расположен на 2 клетки левее , так как количество протонов в ядре, а значит, и заряд ядра, и номер элемента стали на две единицы меньше. А масса образовавшегося изотопа оказывается на 4 единицы меньше .

А льфа распад – это характерный вид радиоактивного распада для естественных радиоактивных элементов шестого и седьмого периодов таблицы Д.И. Менделеева (уран, торий и продукты их распада до висмута включительно) и особенно для искусственных – трансурановых – элементов.

То есть этому виду распада подвержены отдельные изотопы всех тяжёлых элементов, начиная с висмута.

Так, например, при альфа-распаде урана всегда образуется торий, при альфа-распаде тория – радий, при распаде радия – радон, затем полоний и наконец – свинец. При этом из конкретного изотопа урана-238 образуется торий-234, затем радий-230, радон-226 и т. д.

Скорость альфа-частицы при вылете из ядра от 12 до 20 тыс. км/сек.

Бета-распад

Бета-распад – наиболее распространённый вид радиоактивного распада (и вообще радиоактивных превращений), особенно среди искусственных радионуклидов.

У каждого химического элемента есть, по крайней мере, один бета-активный, то есть подверженный бета-распаду изотоп.

Пример естественного бета-активного радионуклида – калий-40 (Т1/2=1,3×109 лет), в природной смеси изотопов калия его содержится всего 0,0119%.

Кроме К-40, значимыми естественными бета-активными радионуклидами являются также и все продукты распада урана и тория, т.е. все элементы от таллия до урана.

Бета-распад включает в себя такие виды радиоактивных превращений, как:

– бета-минус распад;

– бета-плюс распад;

– К-захват (электронный захват).

Бета-минус распад – это испускание из ядра бета-минус частицы – электрона , который образовался в результате самопроизвольного превращения одного из нейтронов в протон и электрон.

При этом бета-частица со скоростью до 270 тыс. км/сек (9/10 скорости света) вылетает из ядра. И так как протонов в ядре стало на один больше, то ядро данного элемента превращается в ядро соседнего элемента справа – с большим номером.

При бета-минус распаде радиоактивный калий-40 превращается в стабильный кальций-40 (стоящий в соседней клетке справа). А радиоактивный кальций-47 – в стоящий справа от него скандий-47 (тоже радиоактивный), который, в свою очередь, также путём бета-минус распада превращается в стабильный титан-47.

Бета-плюс распад – испускание из ядра бета-плюс частицы – позитрона (положительно заряженного «электрона»), который образовался в результате самопроизвольного превращения одного из протонов в нейтрон и позитрон.

В результате этого (так как протонов стало меньше) данный элемент превращается в соседний слева в таблице Менделеева.

Например, при бета-плюс распаде радиоактивный изотоп магния магний-23 превращается в стабильный изотоп натрия (стоящего слева) – натрий-23, а радиоактивный изотоп европия – европий-150 превращается в стабильный изотоп самария – самарий-150.

– испускание из ядра атома нейтрона. Характерен для нуклидов искусственного происхождения.

При испускании нейтрона один изотоп данного химического элемента превращается в другой, с меньшим весом. Так, например, при нейтронном распаде радиоактивный изотоп лития – литий-9 превращается в литий-8, радиоактивный гелий-5 – в стабильный гелий-4.

Если стабильный изотоп йода – йод-127 облучать гамма-квантами, то он становится радиоактивным, выбрасывает нейтрон и превращается в другой, тоже радиоактивный изотоп – йод-126. Это пример искусственного нейтронного распада .

В результате радиоактивных превращений могут образовываться изотопы других химических элементов или того же элемента , которые сами могут быть радиоактивными элементами.

Т.е. распад некоего исходного радиоактивного изотопа может привести к некоторому количеству последовательных радио-активных превращений различных изотопов разных химических элементов, образуя т. н. «цепочки распада».

Например, торий-234, образующийся при альфа-распаде урана-238 превращается в протактиний-234, который в свою очередь снова в уран, но уже в другой изотоп – уран-234.

Заканчиваются же все эти альфа и бета-минус переходы образованием стабильного свинца-206. А уран-234 альфа-распадом – опять в торий (торий-230). Далее торий-230 путём альфа-распада – в радий-226, радий – в радон.

Деление ядер атомов

Это самопроизвольное, или под действием нейтронов, раскалывание ядра атома на 2 примерно равные части , на два «осколка».

При делении вылетают 2-3 лишних нейтрона и выделяется избыток энергии в виде гамма-квантов, гораздо больший, чем при радиоактивном распаде.

Если на один акт радиоактивного распада обычно приходится один гамма-квант, то на 1 акт деления приходится 8 -10 гамма-квантов!

Кроме того, разлетающиеся осколки обладают большой кинетической энергией (скоростью), которая переходит в тепловую.

Вылетевшие нейтроны могут вызвать деление двух-трёх аналогичных ядер, если те окажутся поблизости и если нейтроны попадут в них.

Таким образом, появляется возможность осуществления разветвляющейся, ускоряющейся цепной реакции деления ядер атомов с выделением огромного количества энергии.

Цепная реакция деления

Если позволить цепной реакции развиваться бесконтрольно, то произойдёт атомный (ядерный) взрыв.

Если цепную реакцию держать под контролем, управлять её развитием, не давать ускоряться и постоянно отводить выделяющуюся энергию (тепло), то эту энергию («атомную энергию ») можно использовать для получения электроэнергии. Это осуществляется в атомных реакторах, на атомных электростанциях.

Характеристики радиоактивных превращений

Период полураспада (T 1/2 ) – время, в течение которого половина радиоактивных атомов распадается и их количество уменьшается в 2 раза .

Периоды полураспада у всех радионуклидов разные – от долей секунды (короткоживущие радионуклиды) до миллиардов лет (долгоживущие).

Активность – это количество актов распада (в общем случае актов радиоактивных, ядерных превращений) в единицу времени (как правило, в секунду). Единицами измерения активности являются беккерель и кюри.

Беккерель (Бк) – это один акт распада в секунду (1 расп./сек).

Кюри (Ки) – 3,7×1010 Бк (расп./сек).

Единица возникла исторически: такой активностью обладает 1 грамм радия-226 в равновесии с дочерними продуктами распада. Именно с радием-226 долгие годы работали лауреаты Нобелевской премии французские учёные супруги Пьер Кюри и Мария Склодовская-Кюри.

Закон радиоактивного распада

Изменение активности нуклида в источнике с течением времени зависит от периода полураспада данного нуклида по экспоненциальному закону:

A и (t) = A и (0) × exp (-0,693 t / T 1/2 ),

где A и (0) – исходная активность нуклида;
A и (t) – активность спустя время t;

T 1/2 – период полураспада нуклида.

Зависимость между массой радионуклида (без учета массы неактивного изотопа) и его активностью выражается следующим соотношением:

где m и – масса радионуклида, г;

T 1/2 – период полураспада радионуклида, с;

A и – активность радионуклида, Бк;

А – атомная масса радионуклида.

Проникающая способность радиоактивного излучения .

Пробег альфа-частиц зависит от начальной энергии и обычно колеблется в пределах от 3-х до 7 (редко до 13) см в воздухе, а в плотных средах составляет сотые доли мм (в стекле – 0,04 мм).

Альфа-излучение не пробивает лист бумаги и кожу человека. Из-за своей массы и заряда альфа-частицы обладают наибольшей ионизирующей способностью, они разрушают всё на своём пути, поэтому альфа-активные радионуклиды являются наиболее опасными для человека и животных при попадании внутрь.

Пробег бета-частиц в веществе из-за малой массы (~ в 7000 раз

Меньше массы альфа-частицы), заряда и размеров значительно больше. При этом путь бета-частицы в веществе не является прямолинейным. Проникающая способность также зависит от энергии.

Проникающая способность бета-частиц, образовавшихся при радиоактивном распаде, в воздухе достигает 2÷3 м , в воде и других жидкостях измеряется сантиметрами, в твёрдых телах – долями см.

В ткани организма бета-излучение проникает на глубину 1÷2 см.

Кратность ослабления n- и гамма-излучений.

Наиболее проникающими видами излучения являются нейтронное и гамма-излучение. Их пробег в воздухе может достигать десятков и сотен метров (также в зависимости от энергии), но при меньшей ионизирующей способности.

В качестве защиты от n- и гамма-излучения применяют толстые слои из бетона, свинца, стали и т. п. и речь ведут уже о кратности ослабления.

По отношению к изотопу кобальта-60 (Е = 1,17 и 1,33 Мэв) для 10-кратного ослабления гамма-излучения требуется защита из:

  • свинца толщиной порядка 5 см;
  • бетона около 33 см;
  • воды – 70 см.

Для 100-кратного ослабления гамма-излучения требуется защита из свинца толщиной 9,5 см; бетона – 55 см; воды – 115 см.

Единицы измерения в дозиметрии

Доза (от греческого – «доля, порция») облучения.

Экспозиционная доза (для рентгеновского и гамма-излучения) – определяется по ионизации воздуха.

Единица измерения в системе СИ – «кулон на кг» (Кл/кг) – это такая экспозиционная доза рентгеновского или гамма-излучения, при создании которой в 1 кг сухого воздуха образуется заряд ионов одного знака, равный 1 Кл .

Внесистемной единицей измерения является «рентген» .

1 Р = 2,58 × 10 -4 Кл/кг.

По определению 1 рентген (1Р) – это такая экспозиционная доза при поглощении которой в 1 см 3 сухого воздуха образуется 2,08 × 10 9 пар ионов.

Связь между двумя этими единицами следующая:

1 Кл/кг = 3,68 ·10 3 Р.

Экспозиционной дозесоответствует поглощенная доза в воздухе 0,88 рад.

Доза

Поглощённая доза – энергия ионизирующего излучения, поглощенная единичной массой вещества.

Под энергией излучения, переданной веществу, понимается разность между суммарной кинетической энергией всех частиц и фотонов, попавших в рассматриваемый объем вещества, и суммарной кинетической энергией всех частиц и фотонов, покидающих этот объем. Следовательно, поглощенная доза учитывает всю энергию ионизирующего излучения, оставленную в пределах этого объема, независимо от того, на что эта энергия потрачена.

Единицы измерения поглощенной дозы:

Грэй (Гр) – единица поглощённой дозы в системе единиц СИ. Соответствует энергии излучения в 1 Дж, поглощённой 1 кг вещества.

Рад – внесистемная единица поглощённой дозы. Соответствует энергии излучения 100 эрг, поглощённой веществом массой 1 грамм.

1 рад = 100 эрг/г = 0,01 Дж/кг = 0,01 Гр.

Биологический эффект при одинаковой поглощенной дозе оказывается различным для разных видов излучения.

Например, при одинаковой поглощенной дозе альфа-излучение оказывается гораздо опаснее, чем фотонное или бета-излучение . Это связано с тем, что альфа-частицы создают на пути своего пробега в биологической ткани более плотную ионизацию, концентрируя таким образом вредное воздействие на организм в определенном органе. При этом весь организм испытывает на себе значительно большее угнетающее действие излучения.

Следовательно, для создания одинакового биологического эффекта при облучении тяжелыми заряженными частицами необходима меньшая поглощенная доза, чем при легкими частицами или фотонами.

Эквивалентная доза – произведение поглощенной дозы на коэффициент качества излучения.

Единицы измерения эквивалентной дозы:

Зиверт (Зв) – это единица измерения эквивалентной дозы, любого вида излучения, которое создает такой же биологический эффект, как и поглощенная доза в 1 Гр

Следовательно, 1 Зв = 1 Дж/кг.

Бэр (внесистемная единица) – это такое количество энергии ионизирующего излучения, поглощенное 1 кг биологической ткани, при котором наблюдается тот же биологический эффект, что и при поглощенной дозе 1 рад рентгеновского или гамма-излучения.

1 бэр = 0,01 Зв = 100 эрг/г.

Наименование «бэр» образовано по первым буквам словосочетания «биологический эквивалент рентгена».

До недавнего времени при расчёте эквивалентной дозы использовались «коэффициенты качества излучения » (К) – поправочные коэффициенты, учитывающие различное влияние на биологические объекты (различную способность повреждать ткани организма) разных излучений при одной и той же поглощённой дозе.

Сейчас эти коэффициенты в Нормах радиационной безопасности (НРБ-99) назвали – «взвешивающие коэффициенты для отдельных видов излучения при расчёте эквивалентной дозы (WR)».

Их значения составляют соответственно:

  • рентгеновское, гамма, бета-излучение, электроны и позитроны – 1 ;
  • протоны с Е более 2 Мэв – 5 ;
  • нейтроны с Е менее 10 кэв) – 5 ;
  • нейтроны с Е от 10 кэв до 100 кэв – 10 ;
  • альфа-частицы, осколки деления, тяжёлые ядра – 20 и т. д.

Эффективная эквивалентная доза – эквивалентная доза, рассчитанная с учётом разной чувствительности различных тканей организма к облучению; равна эквивалентной дозе , полученной конкретным органом, тканью (с учётом их веса), умноженной на соответствующий «коэффициент радиационного риска ».

Эти коэффициенты используются в радиационной защите для учёта различной чувствительности разных органов и тканей в возникновению стохастических эффектов от воздействия излучения.

В НРБ-99 их называют «взвешивающими коэффициентами для тканей и органов при расчёте эффективной дозы» .

Для организма в целом этот коэффициент принят равным 1 , а для некоторых органов имеет следующие значения:

  • костный мозг (красный) – 0,12; Ÿ гонады (яичники, семенники) – 0,20;
  • щитовидная железа – 0,05; Ÿ кожа – 0,01 и т. д.
  • лёгкие, желудок, толстый кишечник – 0,12.

Для оценки полной эффективной эквивалентной дозы, полученной человеком, рассчитывают и суммируют указанные дозы для всех органов.

Для измерения эквивалентной и эффективной эквивалентной доз в системе СИ используется та же единица – Зиверт (Зв).

1 Зв равен эквивалентной дозе, при которой произведение вели-чины поглощённой дозы в Гр эях (в биологической ткани) на взвешивающие коэффициенты будет равно 1 Дж/кг .

Иными словами, это такая поглощённая доза, при которой в 1 кг вещества выделяется энергия в 1 Дж .

Внесистемная единица – Бэр.

Взаимосвязь между единицами измерения:

1 Зв = 1 Гр * К = 1 Дж/кг * К = 100 рад * К = 100 бэр

При К=1 (для рентгеновского, гамма-, бета-излучений, электронов и позитронов) 1 Зв соответствует поглощённой дозе в 1 Гр :

1 Зв = 1 Гр = 1 Дж/кг = 100 рад = 100 бэр.

Ещё в 50-х годах было установлено, что если при экспозиционной дозе в 1 рентген воздух поглощает приблизительно столько же энергии, что и биологическая ткань.

Поэтому оказывается, что при оценке доз можно считать (с минимальной погрешностью), что экспозиционная доза в 1 рентген для биологической ткани соответствует (эквивалентна) поглощённой дозе в 1 рад и эквивалентной дозе в 1 бэр (при К=1), то есть, грубо говоря, что 1 Р, 1 рад и 1 бэр – это одно и то же.

При экспозиционной дозе 12 мкР/час за год получаем дозу 1 мЗв.

Кроме того, для оценки воздействия ИИ используют понятия:

Мощность дозы – доза, полученная за единицу времени (сек., час).

Фон – мощность экспозиционной дозы ионизирующего излучения в данном месте.

Естественный фон – мощность экспозиционной дозы ионизирующего излучения, создаваемая всеми природными источниками ИИ.

Источники поступления радионуклидов в окружающую среду

1. Естественные радионуклиды , которые сохранились до нашего времени с момента их образования (возможно, со времени образования солнечной системы или Вселенной), так как у них велики периоды полураспада, а значит, велико время жизни.

2. Радионуклиды осколочного происхождения , которые обра-зуются в результате деления ядер атомов. Образуются в ядерных реакторах, в которых осуществляется управляемая цепная реакция, а также при испытаниях ядерного оружия (неуправляемая цепная реакция).

3. Радионуклиды активационного происхождения образуются из обычных стабильных изотопов в результате активации, то есть при попадании в ядро стабильного атома субатомной частицы (чаще – нейтрона), в результате чего стабильный атом становится радиоактивным. Получают активацией стабильных изотопов, помещая их в активную зону реактора, либо бомбардировкой стабильного изотопа в ускорителях элементарных частиц протонами, электронами и т.п.

Области применения радионуклидных источников

Источники ИИ находят применение в промышленности, сельском хозяйстве, научных исследованиях и медицине. Только в медицине используются приблизительно сто изотопов для различных медицинских исследований, постановки диагноза, стерилизации и радиотерапии.

Во всем мире во многих лабораториях используются радиоактивные материалы для научных исследований. Термоэлектрические генераторы на радиоизотопах применяются для производства электроэнергии для автономного энергопитания различной аппаратуры в удаленных и труднодоступных районах (радио-и световые маяки, метеостанции).

Повсеместно в промышленности используются приборы, содержащие радиоактивные источники для контроля технологических процессов (плотно-, уровне- и толщиномеры), приборы неразру-шающего контроля (гамма-дефектоскопы), приборы для анализа состава вещества. Излучение используется для повышения размера и качества урожая.

Влияние излучения на организм человека. Эффекты радиации

Радиоактивные частицы , обладая огромной энергией и скоростью, при прохождении через любое вещество сталкиваются с атомами и молекулами этого вещества и приводят к их разрушению, ионизации , к образованию «горячих» ионов и свободных радикалов.

Так как биологические ткани человека на 70% состоят из воды , то в большой степени ионизации подвергается именно вода . Из ионов и свободных радикалов образуются вредные для организма соединения, которые запускают целую цепь последовательных биохимических реакций и постепенно приводят к разрушению клеточных мембран (стенок клеток и других структур).

Радиация по-разному действует на людей в зависимости от пола и возраста, состояния организма, его иммунной системы и т. п., но особенно сильно – на младенцев, детей и подростков. При воздействии радиации скрытый (инкубационный, латентный) период , то есть время задержки до наступления видимого эффекта, может продолжаться годами и даже десятилетиями.

Воздействие радиации на организм человека и биологические объекты вызывает три различных отрицательных эффекта:

  • генетический эффект для наследственных (половых) клеток организма. Он может проявиться и проявляется только в потомстве;
  • генетико-стохастический эффект , проявляющийся для наследственного аппарата соматических клеток – клеток тела. Он проявляется при жизни конкретного человека в виде различных мутаций и заболеваний (в том числе раковых);
  • соматический эффект , а точнее – иммунный. Это ослабление защитных сил, иммунной системы организма за счёт разрушения клеточных мембран и других структур.

Материалы по теме

Бета-распадом ядра называется процесс самопроизвольного превращения нестабильного ядра в ядро-изобар в результате испускания электрона (позитрона) или захвата электрона. Известно около 900 бета-радиоактивных ядер. Из них только 20 являются естественными, остальные получены искусственным путем.

Существует три вида β-распада: электронный β - - распад, позитронный β + - распад и электронный захват(е-захват). Основным видом является первый.

При электронном β - -распаде один из нейтронов ядра превращается в протон с испусканием электрона и электронного антинейтрино.

Примеры: распад свободного нейтрона

Т 1/2 =10,7 мин ;

распад трития

Т 1/2 = 12 лет .

При позитронном β + -распаде один из протонов ядра превращается в нейтрон с испусканием положительно заряженного электрона (позитрона) и электронного нейтрино

В случае электронного е-захвата ядро захватывает электрон с электронной оболочки (чаще К-оболочки) собственного атома.

Бета –распад возможен. когда разность масс начального и конечного ядер превышает сумму масс электрона и нейтрино. Всегда, когда энергетически возможен β + -распад возможен и е -захват. Бета-распад наблюдается у ядер с любым массовым числом. Наблюдаемыми характеристиками при бета-распадах являются период полураспада Т 1/2 , формы энергетических β-спектров и другие характеристики.

Энергия β - -распада лежит в интервале

()0,02 Мэв < Е β < 13,4 Мэв ().

Энергия, выделяющаяся при бета-распаде, распределяется между электроном, нейтрино и дочерним ядром. Спектр испускаемых β-частиц непрерывен от нуля до максимального значения. Формулы для вычисления максимальной энергии бета-распадов :

где - масса материнского ядра, - масса дочернего ядра. m e –масса электрона.

Период полураспада Т 1/2 связан с вероятностью бета- распада соотношением

Вероятность бета-распада сильно зависит от энергии бета-распада ( ~ E β 5 при E β >> m e c 2) поэтому период полураспада Т 1/2 меняется в широких пределах