Прикрытие на ближних подступах

ЗПРК «Панцирь-С1» - это универсальное средство борьбы с воздушными целями, имеющих скорость до 1000 м/с, на дистанции от 200 до 20 тысяч метров. Комплекс может уничтожать цели, летящие на высоте от 5 метров до 15 тысяч метров. Также он может бороться с легкой бронированной техникой противника и его живой силой. Это комплекс практически мгновенно может обнаружить и уничтожить самолет, вертолет, крылатую ракету или управляемую авиабомбу противника.

Этот зенитный ракетно-пушечный комплекс может быть размещен на колесном или гусеничном шасси, возможна и стационарная установка. Комплекс имеет защищенную от помех систему связи.

Уничтожение воздушных целей производится за счет пушечного вооружения и зенитных ракет, имеющих ИК и РЛ наведение.

Каждая машина имеет три локатора: РЛС раннего обнаружения и целеуказания, радар сопровождения и наведения, а также пассивный оптический радар.

РЛС обнаружения цели может сразу вести до двадцати объектов, передавать в бортовую вычислительную машину их координаты и данные по скорости движения. Кроме этого, данная РЛС определяет тип цели и ее государственную принадлежность.

РЛС сопровождения целей и ракет в значительной степени определяет высокую эффективность комплекса, она изготовлена с применением фазированной антенной решетки. Применение такого радара позволяет ЗПРК вести огонь сразу по трем целям, при этом по наиболее опасной из них возможен залп из двух ракет.

Оптико-электронная система (ОЭС) используется для стрельбы по низколетящим целям, а также наземным целям.

Зенитный ракетный комплекс Бук

Противодействие на средней дальности

Самоходная огневая установка (СОУ) «Бук-М1» оснащена четырьмя ракетами и РЛС сантиметрового диапазона 9С35. СОУ предназначена для поиска, сопровождения и поражения воздушных целей. В установке есть цифровой вычислительный комплекс, аппаратура связи и навигации, телевизионно-оптический визир, автономная система жизнеобеспечения. СОУ может работать автономно, без привязки к командному пункту и станции обнаружения целей. Правда, в таком случае зона поражения уменьшается до 6-7 градусов по углу и 120 градусов по азимуту. СОУ может выполнять свои функции в условиях постановки радиоэлектронных помех.

Заряжающая установка комплекса «Бук» может осуществлять хранение, перевозку и погрузку восьми ракет.

Комплекс вооружен зенитной твердотопливной одноступенчатой ракетой 9М38. Она имеет радиолокационную систему наведения с полуактивным принципом работы и осколочно-фугасную боевую часть. На начальном этапе полета коррекция осуществляется радиосигналами, а на завершающем – за счет самонаведения.

Зенитно-ракетный комплекс С-400 «Триумф».

Дальний радиус и ближний космос

Индекс УВ ПВО 40Р6, по классификации НАТО SS SA-21 Growler. Комплекс предназначен для уничтожения современных и перспективных средств воздушно-космического нападения на средней и большой дальности.

ЗРК С-400 ( одновременного пуска 12 ракет) совместно с ОТРК «Искандер» и береговыми противокорабельными комплексами «Бастион» играет ключевую роль в концепции ВС России

Аннотация: В лекции рассказывается о методологических аспектах защиты информационных систем.

Требования к архитектуре ИС для обеспечения безопасности ее функционирования

Идеология открытых систем существенно отразилась на методологических аспектах и направлении развития сложных распределенных ИС. Она базируется на строгом соблюдении совокупности профилей, протоколов и стандартов де-факто и де-юре. Программные и аппаратные компоненты по этой идеологии должны отвечать важнейшим требованиям переносимости и возможности согласованной, совместной работы с другими удаленными компонентами. Это позволяет обеспечить совместимость компонент различных информационных систем, а также средств передачи данных. Задача сводится к максимально возможному повторному использованию разработанных и апробированных программных и информационных компонент при изменении вычислительных аппаратных платформ, ОС и процессов взаимодействия.

При создании сложных, распределенных информационных систем, проектировании их архитектуры, инфраструктуры, выборе компонент и связей между ними следует учитывать помимо общих (открытость, масштабируемость , переносимость , мобильность, защита инвестиций и т.п.) ряд специфических концептуальных требований, направленных на обеспечение безопасности функционирования самой системы и данных:

  • архитектура системы должна быть достаточно гибкой, т.е. должна допускать относительно простое, без коренных структурных изменений, развитие инфраструктуры и изменение конфигурации используемых средств, наращивание функций и ресурсов ИС в соответствии с расширением сфер и задач ее применения;
  • должны быть обеспечены безопасность функционирования системы при различных видах угроз и надежная защита данных от ошибок проектирования, разрушения или потери информации, а также авторизация пользователей, управление рабочей загрузкой, резервированием данных и вычислительных ресурсов, максимально быстрым восстановлением функционирования ИС;
  • следует обеспечить комфортный, максимально упрощенный доступ пользователей к сервисам и результатам функционирования ИС на основе современных графических средств, мнемосхем и наглядных пользовательских интерфейсов;
  • систему должна сопровождать актуализированная, комплектная документация, обеспечивающая квалифицированную эксплуатацию и возможность развития ИС.

Подчеркнем, что технические системы безопасности, какими бы мощными они ни были, сами по себе не могут гарантировать надежность программно-технического уровня защиты. Только сфокусированная на безопасность архитектура ИС способна сделать эффективным объединение сервисов, обеспечить управляемость информационной системы, ее способность развиваться и противостоять новым угрозам при сохранении таких свойств, как высокая производительность , простота и удобство использования . Для того чтобы выполнить эти требования архитектура ИС должна строиться на следующих принципах.

Проектирование ИС на принципах открытых систем, следование признанным стандартам, использование апробированных решений, иерархическая организация ИС с небольшим числом сущностей на каждом уровне - все это способствует прозрачности и хорошей управляемости ИС.

Непрерывность защиты в пространстве и времени, невозможность преодолеть защитные средства, исключение спонтанного или вызванного перехода в небезопасное состояние - при любых обстоятельствах, в том числе нештатных, защитное средство либо полностью выполняет свои функции, либо полностью блокирует доступ в систему или ее часть

Усиление самого слабого звена, минимизация привилегий доступа, разделение функций обслуживающих сервисов и обязанностей персонала. Предполагается такое распределение ролей и ответственности, чтобы один человек не мог нарушить критически важный для организации процесс или создать брешь в защите по неведению или заказу злоумышленников.

Применительно к программно-техническому уровню принцип минимизации привилегий предписывает выделять пользователям и администраторам только те права доступа , которые необходимы им для выполнения служебных обязанностей. Это позволяет уменьшить ущерб от случайных или умышленных некорректных действий пользователей и администраторов.

Эшелонирование обороны, разнообразие защитных средств, простота и управляемость информационной системы и системой ее безопасности. Принцип эшелонирования обороны предписывает не полагаться на один защитный рубеж, каким бы надежным он ни казался. За средствами физической защиты должны следовать программно-технические средства, за идентификацией и аутентификацией - управление доступом , протоколирование и аудит .

Эшелонированная оборона способна не только не пропустить злоумышленника, но и в некоторых случаях идентифицировать его благодаря протоколированию и аудиту. Разнообразие защитных средств предполагает создание различных по своему характеру оборонительных рубежей, чтобы от потенциального злоумышленника требовалось овладение разнообразными и, по возможности, несовместимыми между собой навыками.

Простота и управляемость ИС в целом и защитных средств в особенности. Только в простой и управляемой системе можно проверить согласованность конфигурации различных компонентов и осуществлять централизованное администрирование . В этой связи важно отметить интегрирующую роль Web-сервиса, скрывающего разнообразие обслуживаемых объектов и предоставляющего единый, наглядный интерфейс . Соответственно, если объекты некоторого вида (например, таблицы базы данных ) доступны через Интернет , необходимо заблокировать прямой доступ к ним, поскольку в противном случае система будет уязвимой, сложной и плохо управляемой.

Продуманная и упорядоченная структура программных средств и баз данных. Топология внутренних и внешних сетей непосредственно отражается на достигаемом качестве и безопасности ИС, а также на трудоемкости их разработки. При строгом соблюдении правил структурного построения значительно облегчается достижение высоких показателей качества и безопасности, так как сокращается число возможных ошибок в реализующих программах, отказов и сбоев оборудования, упрощается их диагностика и локализация .

В хорошо структурированной системе с четко выделенными компонентами (клиент, сервер приложений, ресурсный сервер ) контрольные точки выделяются достаточно четко, что решает задачу доказательства достаточности применяемых средств защиты и обеспечения невозможности обхода этих средств потенциальным нарушителем.

Высокие требования, предъявляемые к формированию архитектуры и инфраструктуры на стадии проектирования ИС, определяются тем, что именно на этой стадии можно в значительной степени минимизировать число уязвимостей, связанных с непредумышленными дестабилизирующими факторами, которые влияют на безопасность программных средств, баз данных и систем коммуникации.

Анализ безопасности ИС при отсутствии злоумышленных факторов базируется на модели взаимодействия основных компонент ИС (рис. 6.1) [Липаев В. В., 1997]. В качестве объектов уязвимости рассматриваются:

  • динамический вычислительный процесс обработки данных, автоматизированной подготовки решений и выработки управляющих воздействий;
  • объектный код программ, исполняемых вычислительными средствами в процессе функционирования ИС;
  • данные и информация, накопленная в базах данных;
  • информация, выдаваемая потребителям и на исполнительные механизмы.


Рис. 6.1.

Полное устранение перечисленных угроз принципиально невозможно. Задача состоит в выявлении факторов, от которых они зависят, в создании методов и средств уменьшения их влияния на безопасность ИС, а также в эффективном распределении ресурсов для обеспечения защиты, равнопрочной по отношению ко всем негативным воздействиям.

Стандартизация подходов к обеспечению информационной безопасности

Специалистам в области ИБ сегодня практически невозможно обойтись без знаний соответствующих профилей защиты, стандартов и спецификаций. Формальная причина состоит в том, что необходимость следования некоторым стандартам (например, криптографическим и "Руководящим документам" Гостехкомиссии РФ) закреплена законодательно. Убедительны и содержательные причины: стандарты и спецификации - одна из форм накопления и реализации знаний, прежде всего о процедурном и программно-техническом уровнях ИБ и ИС, в них зафиксированы апробированные, высококачественные решения и методологии, разработанные наиболее квалифицированными компаниями в области разработки ПО и безопасности программных средств.

На верхнем уровне можно выделить две существенно отличающиеся друг от друга группы стандартов и спецификаций:

1. оценочные стандарты, предназначенные для оценки и классификации ИС и средств защиты по требованиям безопасности;

2. спецификации, регламентирующие различные аспекты реализации и использования средств и методов защиты.

Эти группы дополняют друг друга. Оценочные стандарты описывают важнейшие с точки зрения ИБ понятия и аспекты ИС, играя роль организационных и архитектурных спецификаций. Специализированные стандарты и спецификации определяют, как именно строить ИС предписанной архитектуры и выполнять организационные и технические требования для обеспечения информационной безопасности (рис. 6.2 , рис. 6.3).


Рис. 6.2.


Рис. 6.3.

Из числа оценочных необходимо выделить стандарт "Критерии оценки доверенных компьютерных систем" и его интерпретацию для сетевых конфигураций (Министерство обороны США), "Гармонизированные критерии Европейских стран", международный стандарт "Критерии оценки безопасности информационных технологий" и, конечно, "Руководящие документы" Гостехкомиссии РФ. К этой же группе относится и Федеральный стандарт США " Требования безопасности для криптографических модулей", регламентирующий конкретный, но очень важный и сложный аспект информационной безопасности.

Технические спецификации, применимые к современным распределенным ИС, создаются главным образом "Тематической группой по технологии Интернет " ( Internet Engineering Task Force - IETF ) и ее подразделением - рабочей группой по безопасности. Ядром технических спецификаций служат документы по безопасности на IP-уровне (IPSec). Кроме этого, анализируется защита на транспортном уровне ( Transport Layer Security - TLS ), а также на уровне приложений (спецификации GSS-API , Kerberos).

Интернет -сообщество уделяет должное внимание административному и процедурному уровням безопасности, создав серию руководств и рекомендаций: "Руководство по информационной безопасности предприятия", "Как выбирать поставщика Интернет -услуг", "Как реагировать на нарушения информационной безопасности" и др.

В вопросах сетевой безопасности востребованы спецификации X.800 " Архитектура безопасности для взаимодействия открытых систем", X.500 " Служба директорий : обзор концепций, моделей и сервисов" и X.509 " Служба директорий : каркасы сертификатов открытых ключей и атрибутов".

В последние 15 лет утверждена большая серия международной организацией по стандартизации ( International Organization for Standardization - ISO ) стандартов по обеспечению безопасности информационных систем и их компонентов. Подавляющее большинство из этих стандартов относятся к телекоммуникациям, процессам и протоколам обмена информацией в распределенных системах и защите ИС от несанкционированного доступа. В связи с этим при подготовке системы защиты и обеспечения безопасности из стандартов должны быть отобраны наиболее подходящие для всего жизненного цикла конкретного проекта ПС.

В следующей главе "Технологии и стандартизация открытых вычислительных и информационных систем" будет подробно рассказано о структуре и деятельности ISO и её технических комитетах, в частности об Объединенном техническом комитете № 1 ( Joint Technical Committee 1 - JTC1), предназначенном для формирования всеобъемлющей системы базовых стандартов в области ИТ и их расширений для конкретных сфер деятельности. В зависимости от проблем, методов и средств защиты вычислительных и информационных систем международные стандарты ISO можно разделить на несколько групп [В. Липаев., http://www.pcweek.ru/themes/detail.php?ID=55087 ].

Первая группа стандартов - ISO /IEC JTC1/SC22 " Поиск , передача и управление информацией для взаимосвязи открытых систем (ВОС)" - создана и развивается под руководством подкомитета SC22. Стандарты этой группы посвящены развитию и детализации концепции ВОС. Защита информации в данной группе рассматривается как один из компонентов, обеспечивающих возможность полной реализации указанной концепции. Для этого определены услуги и механизмы защиты по уровням базовой модели ВОС, изданы и разрабатываются стандарты, последовательно детализирующие методические основы защиты информации и конкретные протоколы защиты на разных уровнях открытых систем.

Вторая группа стандартов - ISO /IEC JTC1/SC27 - разрабатывается под руководством подкомитета SC27 и ориентирована преимущественно на конкретные методы и алгоритмы защиты. В эту группу объединены методологические стандарты защиты информации и криптографии, независимо от базовой модели ВОС. Обобщаются конкретных методов и средств защиты в систему организации и управления защитой ИС.

В процессе планирования и проектирования программной системы защиты ИС целесообразно использовать третью группу из представленных ниже наиболее общих методологических стандартов, регламентирующих создание комплексов защиты. Вследствие близких целей стандартов их концепции и содержание частично перекрещиваются и дополняют друг друга. Поэтому стандарты целесообразно использовать совместно (создать профиль стандартов), выделяя и адаптируя их компоненты в соответствии с требованиями конкретного проекта ИС.

1. ISO 10181:1996. Ч. 1-7. "ВОС. Структура работ по обеспечению безопасности в открытых системах". Часть 1. Обзор. Часть 2. Структура работ по аутентификации. Часть 3. Структура работ по управлению доступом. Часть 4. Структура работ по безотказности. Часть 5. Структура работ по конфиденциальности. Часть 6. Структура работ по обеспечению целостности. Часть 7. Структура работ по проведению аудита на безопасность .

2. ISO 13335:1996-1998. Ч. 1-5. ИТ. ТО. "Руководство по управлению безопасностью". Часть 1. Концепция и модели обеспечения безопасности информационных технологий. Часть 2. Планирование и управление безопасностью информационных технологий. Часть 3. Техника управления безопасностью ИТ. Часть 4. Селекция (выбор) средств обеспечения безопасности. Часть 5. Безопасность внешних связей.

3. ISO 15408:1999. Ч.26 1-3. "Методы и средства обеспечения безопасности. Критерии оценки безопасности информационных технологий". Часть 1. Введение и общая модель. Часть 2. Защита функциональных требований. Часть 3. Защита требований к качеству.

Первый стандарт этой группы, ISO 10181, состоит из семи частей и начинается с общей концепции обеспечения безопасности открытых информационных систем и развивает положения стандарта ISO 7498-2. В первой его части приводятся основные понятия и общие характеристики методов защиты и акцентируется внимание на необходимости сертификации системы обеспечения безопасности ИС при ее внедрении. Далее кратко описаны основные средства обеспечения безопасности ИС, особенности работ по их созданию, основы взаимодействия механизмов защиты, принципы оценки возможных отказов от обслуживания задач ИС по условиям защиты. Показаны примеры построения общих схем защиты ИС в открытых системах. Содержание частей стандарта достаточно ясно определяется их названиями.

Второй стандарт, ISO 13335, отражает широкий комплекс методологических задач, которые необходимо решать при проектировании систем обеспечения безопасности любых ИС. В его пяти частях внимание сосредоточено на основных принципах и методах проектирования равнопрочных систем защиты ИС от угроз различных видов. Это руководство достаточно полно систематизирует основные методы и процессы подготовки проекта защиты для последующей разработки конкретной комплексной системы обеспечения безопасности функционирования ИС.

Изложение базируется на понятии риска от угроз любых негативных воздействий на ИС. В первой части стандарта описаны функции средств защиты и необходимые действия по их реализации, модели уязвимости и принципы взаимодействия средств защиты. При проектировании систем защиты рекомендуется учитывать: необходимые функции защиты, возможные угрозы и вероятность их осуществления, уязвимость , негативные воздействия исполненияугроз, риски; защитные меры; ресурсы (аппаратные, информационные, программные, людские) и их ограниченность. В остальных частях стандарта предложены и развиваются концепция и модель управления и планирования построения системы защиты, взаимодействие компонентов которой в общем виде представлено на рис. 6.4 .

В стандарте ISO 13335 выделены функциональные компоненты и средства обеспечения безопасности, а также принципы их взаимодействия. Процессы управления защитой должны включать: управление изменениями и конфигурацией; анализ и управление риском; прослеживаемость функций; регистрацию, обработку и мониторинг инцидентов. Приводятся общие требования к оценке результатов обеспечения безопасности, а также возможные варианты организации работы специалистов для комплексного обеспечения безопасности ИС.

Систематизированы политика и техника планирования, выбора, построения и использования средств обеспечения безопасности для ограничения допустимого риска при различных схемах взаимодействия и средствах защиты. Рекомендуются различные подходы и стратегии при создании систем защиты и поддержке их последующего развития. Содержание частей стандарта детализирует общие концепции и достаточно точно определяется их названиями. Изложенную в стандарте модель планирования обеспечения безопасности целесообразно конкретизировать и использовать как фрагмент системного проекта разработки ИС.


Рис. 6.4.

Критерии оценки механизмов безопасности программно-технического уровня представлены в международном стандарте ISO 15408-1999 " Общие критерии оценки безопасности информационных технологий" ("The Common Criteria for Information Technology Security Evaluation "), принятом в 1999 году. Этот стандарт закрепил базовые основы стандартизации в области информационной защиты и получил дальнейшее развитие в серии стандартов, о которых будет сказано ниже.

В первой части стандарта представлены цели и концепция обеспечения безопасности, а также общая модель построения защиты ИС. Концепция базируется на типовой схеме жизненного цикла сложных систем, последовательной детализации требований и спецификаций компонентов. В ней выделены: окружающая среда; объекты; требования; спецификации функций; задачи инструментальных средств системы защиты. Изложены общие требования к критериям оценки результатов защиты, Профилю по безопасности, целям оценки требований и к использованию их результатов. Предложен проект комплекса общих целей, задач и критериев обеспечения безопасности ИС.

Во второй части представлена парадигма построения и реализации структурированных и детализированных функциональных требований к компонентам защиты ИС. Выделены и классифицированы одиннадцать групп (классов) базовых задач обеспечения безопасности ИС. Каждый класс детализирован наборами требований, которые реализуют определенную часть целей обеспечения безопасности и, в свою очередь , состоят из набора более мелких компонентов решения частных задач.

В классы включены и подробно описаны принципы и методы реализации требований к функциям безопасности: криптографическая поддержка ; защита коммуникаций и транспортировка (транзакции) информации; ввод, вывод и хранение пользовательских данных; идентификация и аутентификация пользователей; процессы управления функциями безопасности; защита данных о частной жизни; реализация ограничений по использованию вычислительных ресурсов; обеспечение надежности маршрутизации и связи между функциями безопасности, а также некоторые другие классы требований.

Для каждой группы задач приводятся рекомендации по применению набора наиболее эффективных компонентов и процедур обеспечения безопасности ИС. Для достижения целей безопасности ИС с определенным уровнем гарантии качества защиты компоненты функциональных требований и способов их реализации рекомендуется объединять в унифицированные "Профили защиты многократного применения".

Эти "Профили" могут служить базой для дальнейшей конкретизации функциональных требований в "Техническом задании по безопасности" для определенного проекта ИС и помогают избегать грубых ошибок при формировании таких требований. Обобщения оценок спецификации требований "Задания по безопасности" должны давать заказчикам, разработчикам и испытателям проекта возможность делать общий вывод об уровне его соответствия функциональным требованиям и требованиям гарантированности защиты ИС. В обширных приложениях изложены рекомендации

Эшелонированная защита

Эшелонированная защита (англ. Defense in Depth) - концепция страхования информации, в которой несколько различных слоёв систем защиты установлены по всей компьютерной системе. Его предназначение - предоставлять избыточную защищенность компьютерной системы в случае неисправности системы контроля безопасности или при использовании злоумышленником некой уязвимости.

Идея эшелонированной защиты состоит в защите системы от любой атаки, используя, как правило, последовательно, ряд независимых методов.

Изначально эшелонированная защита являлась сугубо военной стратегией, позволяющей скорее не упредить и предотвратить, а отложить атаку противника, купить немного времени для того, чтобы правильно расположить различные меры защиты. Для более полного понимания можно привести пример: колючая проволока эффективно сдерживает пехоту, но танки легко переезжают её. Однако по противотанковым ежам танк проехать не может, в отличие от пехоты, которая их просто обходит. Но если их использовать вместе, то ни танки, ни пехота быстро пройти не смогут, и у защищающейся стороны будет время на подготовку.

Размещение механизмов защиты, процедур и политик призвано повысить защищенность компьютерной системы, где несколько уровней защиты могут предотвратить шпионаж и прямые атаки на критически важные системы. С точки зрения компьютерных сетей, эшелонированная защита предназначена не только для предотвращения НСД, но и для предоставления времени, за которое можно обнаружить атаку и отреагировать на неё, тем самым снижая последствия нарушения.

В компьютерной системе «офисного» типа может обрабатываться информация с различными уровнями доступа - от свободной, до информации, составляющей государственную тайну. Именно поэтому, для предотвращения НСД и различных видов атак, в такой системе требуется наличие эффективной системы защиты информации.

Далее будут рассмотрены основные слои защиты (эшелоны), используемые в эшелонированных системах защиты. Следует учесть, что система защиты, состоящая из двух и более приведенных ниже систем, считается эшелонированной.

Составляющие эшелонированной системы защиты информации

Антивирусные программы

Антивирусная программа (антивирус) -- специализированная программа для обнаружения компьютерных вирусов, а также нежелательных (считающихся вредоносными) программ вообще и восстановления заражённых (модифицированных) такими программами файлов, а также для профилактики -- предотвращения заражения (модификации) файлов или операционной системы вредоносным кодом.

Относится к программным средствам, используемым в целях обеспечения защиты (некриптографическими методами) информации, содержащей сведения, составляющие государственную тайну, иной информации с ограниченным доступом.

Классифицировать антивирусные продукты можно сразу по нескольким признакам:

По используемым технологиям антивирусной защиты:

Классические антивирусные продукты (продукты, применяющие только сигнатурный метод детектирования);

Продукты проактивной антивирусной защиты (продукты, применяющие только проактивные технологии антивирусной защиты);

Комбинированные продукты (продукты, применяющие как классические, сигнатурные методы защиты, так и проактивные).

По функционалу продуктов:

Антивирусные продукты (продукты, обеспечивающие только антивирусную защиту)

Комбинированные продукты (продукты, обеспечивающие не только защиту от вредоносных программ, но и фильтрацию спама, шифрование и резервное копирование данных и другие функции);

По целевым платформам:

Антивирусные продукты для ОС семейства Windows;

Антивирусные продукты для ОС семейства *NIX (к данному семейству относятся ОС BSD, Linux и др.);

Антивирусные продукты для ОС семейства MacOS;

Антивирусные продукты для мобильных платформ (Windows Mobile, Symbian, iOS, BlackBerry, Android, Windows Phone 7 и др.).

Антивирусные продукты для корпоративных пользователей можно также классифицировать по объектам защиты:

Антивирусные продукты для защиты рабочих станций;

Антивирусные продукты для защиты файловых и терминальных серверов;

Антивирусные продукты для защиты почтовых и Интернет-шлюзов;

Антивирусные продукты для защиты серверов виртуализации.

Требования к средствам антивирусной защиты включают общие требования к средствам антивирусной защиты и требования к функциям безопасности средств антивирусной защиты.

Для дифференциации требований к функциям безопасности средств антивирусной защиты установлено шесть классов защиты средств антивирусной защиты. Самый низкий класс - шестой, самый высокий - первый.

Средства антивирусной защиты, соответствующие 6 классу защиты, применяются в информационных системах персональных данных 3 и 4 классов.

Средства антивирусной защиты, соответствующие 5 классу защиты, применяются в информационных системах персональных данных 2 класса.

Средства антивирусной защиты, соответствующие 4 классу защиты, применяются в государственных информационных системах, в которых обрабатывается информация ограниченного доступа, не содержащая сведения, составляющие государственную тайну, в информационных системах персональных данных 1 класса, а также в информационных системах общего пользования II класса.

Средства антивирусной защиты, соответствующие 3, 2 и 1 классам защиты, применяются в информационных системах, в которых обрабатывается информация, содержащая сведения, составляющие государственную тайну.

Также выделяются следующие типы средств антивирусной защиты:

тип «А» - средства антивирусной защиты (компоненты средств антивирусной защиты), предназначенные для централизованного администрирования средствами антивирусной защиты, установленными на компонентах информационных систем (серверах, автоматизированных рабочих местах);

тип «Б» - средства антивирусной защиты (компоненты средств антивирусной защиты), предназначенные для применения на серверах информационных систем;

тип «В» - средства антивирусной защиты (компоненты средств антивирусной защиты), предназначенные для применения на автоматизированных рабочих местах информационных систем;

тип «Г» - средства антивирусной защиты (компоненты средств антивирусной защиты), предназначенные для применения на автономных автоматизированных рабочих местах.

Средства антивирусной защиты типа «А» не применяются в информационных системах самостоятельно и предназначены для использования только совместно со средствами антивирусной защиты типов «Б» и (или) «В».

Цель эшелонированной антивирусной защиты состоит в фильтрации вредоносного ПО на разных уровнях защищаемой системы. Рассмотрим:

Уровень подключения

Корпоративная сеть как минимум состоит из уровня подключения и ядра. На уровне подключения у многих организаций установлены средства межсетевого экранирования, системы обнаружения и предотвращения вторжений (IDS/IPS/IDP) и средства защиты от атак типа отказа в обслуживании. На базе данных решений реализуется первый уровень защиты от проникновения вредоносного ПО. Межсетевые экраны и средства IDS/IPS/IDP «из коробки» обладают встроенным функционалом инспекции на уровне протокол-агентов. Более того, стандартом де-факто для UTM решений является встроенный антивирус, который проверяет входящий/исходящий трафик. Наличие поточных антивирусов в межсетевых экранах также становится нормой. Подобные опции появляются все чаще в новых версиях хорошо известных всем продуктов. Однако же многие пользователи забывают про встроенные функции сетевого оборудования, но, как правило, их активация не требует дополнительных затрат на покупку опций расширения.

Таким образом, оптимальное применение встроенных функций безопасности сетевого оборудования и активация дополнительных опций антивирусного контроля на межсетевых экранах позволит создать первый уровень эшелонированной защиты.

Уровень защиты приложений

К уровню защиты приложений можно отнести как шлюзовые решения по антивирусной проверке, так и средства безопасности, изначально направленные на решение не антивирусных задач. Подобные решения представлены на рынке и сертифицированы по требованиям ФСТЭК России. Данные продукты не требуют серьезных затрат при внедрении и не привязаны к типам проверяемого контента, а потому могут использоваться в организациях любого масштаба.

Решения, основной функцией которых не является антивирусная проверка, также могут выступать в роли второго уровня фильтрации вредоносного ПО. Примером служат широко распространенные шлюзовые решения по фильтрации спама и защите веб-сервисов -- URL-фильтрации, Web Application Firewall, средства балансировки. Зачастую они обладают возможностью осуществлять антивирусную проверку обрабатываемого контента при помощи нескольких производителей фильтрации вредоносного контента. В частности, реализация антивирусной проверки на уровне почтовых систем или шлюзов фильтрации спама. В случае последовательного применения нескольких антивирусных продуктов эффективность фильтрации вирусов во входящей/исходящей корреспонденции может достигать почти 100%.

С помощью указанного подхода можно уже на первом и втором уровне эшелонированной защиты достичь серьезных показателей по фильтрации вредоносного ПО. Иными словами, при реализации адекватной системы антивирусной защиты (до пользователя) львиная доля вредоносного ПО будет отфильтрована на уровне шлюзовых решений того или иного назначения.

Уровень защиты хоста

Под защитой хостов подразумевается реализация функций антивирусных проверок серверов и рабочих мест пользователей. Поскольку в повседневной работе сотрудники применяют множество стационарных и мобильных устройств, то нужно защищать их все. Более того, простой сигнатурный антивирус уже давно не считается серьезным инструментом защиты. Именно поэтому многие организации перешли на технологии Host IPS, которая позволяет задействовать при проверке дополнительные механизмы контроля/защиты посредством функционала межсетевого экрана, IPS-системы (поведенческий анализ).

Если вопросы защиты рабочих мест пользователей уже хорошо отрегулированы, то реализация Host IPS на прикладных серверах (физических или виртуальных) -- задача специфическая. С одной стороны, технология Host IPS не должна существенно увеличивать загрузку сервера, с другой -- обязана обеспечить требуемый уровень защищенности. Разумный баланс можно найти только при помощи пилотного тестирования решения на конкретном наборе приложений и аппаратной платформе.

Если речь идет о системах выявления нарушений следует помнить одно - системы подачи тревоги сами по себе не предотвращают прееступление. Их задача - доложить вам, что кто-то старается похитить имущество, ценности.

Следует обратить внимание еще на одно обстоятельство: системы подачи сигналов тревоги обнаруживают попытки проникновения на территорю фирмы преступников, но также могут подавать сигналы тревоги и против собственного персонала, которому запрещен доступ в отдельные внутренние структуры (например, сейфы, хранилища, секретные участки и лаборатории и т.п.). Но нет еще технических систем, которые могли бы обнаруживать преступные намерения собственных работников фирмы. Это обстоятельство надо иметь в виду при формировании технических систем защиты.

Техническая система выявления нарушений и преступлений имеет определенные функции в общей системе безопасности объекта хозяйствования. С ее помощью необходимо решать следующие задачи:

а) установление факта возникновения опасной ситуации совершения преступления;

б) одача сигнала тревоги;

в) контроль и мониторинг развития опасной ситуации;

г) активизация реагирования на опасную ситуацию с целью прекращения преступления или нарушения.

Хорошая система подачи сигналов тревоги должна отвечать следующим требованиям:

1. Надежно обнаруживать присутствие человека без разрешения на охраняемом объекте.

2. Надежно обнаруживать проникновение нарушителей и преступников в фирму через технические барьеры охраны.

3. Своевременно приводить в действие системы прекращения нарушений и преступлений.

4. Исключение фальшивой тревоги.

Согласно ПППАОС , все системы подачи тривоги можно условно поделить на три группы:

Внешние системы подачи сигналов тревоги, которые устанавливаются независимо;

Внешние системы подачи сигналов тревоги, которые устанавливаются на изгородях;

Внутренние системы подачи сигналов тревоги.

Коротко охарактеризуем эти системы.

Во внешних системах подачи сигналов тревоги, устанавливаемых независимо, чаще всего используются следующие технические устройства:

Устройства инфракрасного излучения . В этих технических системах используются генераторы и приемники инфракрасного излучения, которые устанавливаются неприметно вне забора. В ясную, сухую погоду горизонтальные инфракрасные лучи дают четкое изображение на значительном расстоянии и фиксируют все факты их пересечение. Во время интенсивного дождя, или тумана, лучи могут ослабляться, или рассеиваться, что снижает их эффективность. Тайное и защищенное установление генераторов и приемников ИК излучения необходимо для того, чтобы они не использовались преступниками для преодоления защиты и умышленного причинения фальшивой тревоги, чтобы спланировать эффективное преодоление преграды. Стоят эти системы дорого.



Микроволновой «забор». Как и в предыдущем случае, используются генераторы и приемники, но микроволнового излучения. При пересечении лучей, изменяются их характеристики, что и фиксирует приемник. Считается, что эта система более надежная, чем системы ИК излучения. Недостатками ее является необходимость поддерживать чистой плоскость между приемником и генератором, а также возможные фальшивые сигналы тревоги, которые вызываются животными, легкими предметами, перемещаемыми ветром, а также искусственно создаваемые преступниками. Монтируется также тайно.

Системы контроля давления на грунт. Очень эффективные системы ночного контроля прохождения человека, или наземных транспортных средств. В грунт монтируются оптико-волокнистые кабели, которые запоняются специальной жидкостью, способной с помощью специальных детекторов фиксировать изменение давления и обнаруживать несанкционированное пересечение барьеров. Система дорогая, но практически не вызывает фальшивой тревога.

Во внешней среде также используются системы подачи сигналов тревоги, которые устанавливаются на изгородях. С реди них можно выделить микрофонные акустические кабели. Микрофоны на кабеле до 300 м монтируются на заборах. Они дают возможность обнаруживать вибрацию и шум, возникающие при попытке преодалеть забор, или его разобрать. Нарушения определяются на основании отклонения сигналов от нормального уровня. Система относительно дешевая.



Широко используются для определенной цели также датчики вибрации . Обычно такие устройства состоят из инерционных или пьезоэлектрических устройств, которые монтируются на заборах и подключаются к общей электрической или электронной сети. Если забор подвергается механическому воздействию, электрическая или электронная сеть размыкается, что фиксируется приборами.

Более усовершенствованной является система применения оптиковолоконных кабелей. Такой кабель монтируется в забор и по нему посылается световой сигнал. При механическом действии на забор, изменяются параметры светового сигнала, что фиксируется и оценивается специальными датчиками. Поскольку имеет высокую чувствительность, возможны ошибочные сигналы.

Также для подачи сигналов тревоги на заборах широко используются датчики электромагнитного поля . Это кабели – проводники, которые монтируются на заборе, или стене, но заизолированы от прямого контакта с ними. Когда в электромагнитное поле попадает посторонний предмет, изменяется его частота. Высокая чувствительность системы требует очистки окружающей среды возле забора от посторонних предметов, чтобы не было ошибочных сигналов.

Расположение технических приборов по периметру территории, или на здании охраняемого объекта, еще не гарантирует 100-процентного контроля доступа, так как каждое здание, или объект имеет шесть плоскостей, оборудование которых техническими приборами очень дорого. Поэтому, кроме технических средств выявления попыток проникнуть на объекты защиты, широкое применение имеют устройства, с помощью которых контролируется присутствие на нем человека или группы людей. Эти технические средства называются объемно-пространственными.

Для этого используют детекторы на пассивном инфракрасном излучении. Это наиболее распространенные приборы, которые дают возможность обнаруживать в помещении наличие или движение физических объектов. В основе их действия лежит способность принимать и фиксировать инфракрасное излучение, которое присуще каждому объекту в разной мере. Ранее использовали датчики, принимающие инфракрасное излучение, которые можно было блокировать, т.е. прикрывать, чем и пользовались преступники. Но в последнее время разработаны датчики, которые подают сигналы на диспетчерские пункты и при попытке блокирования.

С этой же целью используют и микроволновые датчики . Они посылают микроволны в контролируемое пространство, поэтому появление постороннего предмета отражает волны на приемник, который фиксирует изменения в волновом поле.

Для объемно-пространственного контроля также используются ультразвуковые детекторы . Они действуют аналогично микроволновым датчикам, но в диапазоне высокочастотных волн. Ультразвуковые детекторы особенно эффективны для контроля больших помещений, но имеют недостатки: не могут преодолеть стекла, или перегородки, подают фальшивые сигналы, когда близко есть источник ультразвукового излучения (например, от дисковых тормозов авто и т.п.).

Для избежания недостатков отдельных технических средств охраны часто используются приборы, которые называются «технологическими парами». Технологическая пара - это комбинирование двух датчиков в одном корпусе. Чаще всего используется комбинация инфракрасного детектора и микроволнового или ультразвукового датчика. Стоимость таких устройств высокая, но эффективность высока.

4. Организация технических систем контроля доступа к охраняемым объектам

Когда приборы, устройства и датчики фиксируют появление на охраняемом объекте нарушителя, с помощью других технических средств начинается контроль и мониторинг его действий с целью прекращения преступления.

Задачи, которые стоят перед этой группой устройств определяют следующим образом:

1. Постоянно контролировать состояние первичной информации, которая исходит от датчиков, и передавать ее для своевременного реагирования. Эти системы должны надежно питаться энергией и быть максимально трудоспособными.

2. Одновременно с прохождением информации на пункт мониторинга о нарушении и нарушителях, они должны подавать сигналы тревоги: от колокольчика до сирены.

3. Они должны обнаруживать место нарушения, для того, чтобы оператор организовал адекватное противодействие.

4. Они должны отличать нарушителей от тех, кому разрешен доступ на охраняемый объект.

5. Устройства контроля и мониторинга должны быть размещены на территории охраняемого объекта.

Среди технических средств контроля и мониторинга следует прежде всего определить системы контроля доступа. Они необходимы потому, что злоумышленники не ограничивают свою деятельность временем, когда на объекте, нет персонала и действуют приборы выявления несанкционированного пребывания на нем. Бывает и так, что преступник совершает преступление в то время, когда на объекте работает персонал. Поэтому, в организации охраны необходимо последовательно внедрять ключевой принцип стратегии обеспечения безопасности: «на объекте быть тому, кто должен быть ». Это означает, что присутствие работающих лиц, а тем более посторонних лиц в критических местах, с точки зрения безопасности, должно жестко контролироваться.

Обеспечение контроля доступа на объект работающих, или посторонних лиц, может быть осуществлено с помощью следующих средств:

а) с помощью механических устройств ограничения доступа (замки и т.п.);

б) с помощью специально обученных животных (собаки, птицы и т.д);

в) с помощью технических приборов;

г) с помощью специалистов-охранников.

Наиболее эффективными средствами контроля доступа являются специально обученные животные и специалисты-охранники. Но, они являются наиболее дорогими средствами. Менее дорогими являются технические средства. Но в практическом аспекте следует комбинировать все эти средства, отыскивая наиболее дешевый и эффективный вариант. Поэтому рассмотрим технические средства контроля доступа на охраняемые объекты. Сегодня широко используются электронные средства контроля доступа.

Все электронные средства контроля доступа на объекты обычно известны как системы автоматизированного контроля доступа и они состоят из трех основных элементов:

1. Элементы идентификации лиц, которым разрешено присутствие на охраняемом объекте. Это могут быть, например, карточка, или специальный знак, которые подтверждают разрешение, сканирование биометрических характеристик лица. Наконец, это может быть информация, которая предоставлена лицу о коде или идентификационном номере.

2. Устройства, которые обнаруживают элементы идентификации. Они располагаются на постах контроля доступа на объект и способны распознавать элементы идентификации лиц, которым разрешен доступ.

3. Устройства, которые способны воспринимать информацию, оценивать ее и снимать, или ставить физические препятствия на пути лица. Это, как правило, компьютер вместе с другими физическими устройствами.

Второй и третий элементы системы могут объединяться в одном устройстве, делающем ее более дешевой. Электронные средства контроля имеют некоторые преимущества перед специалистами и животными. Прежде всего, это быстрое блокирование доступа, когда элементы идентификации лица не отвечают разрешению. Электронная система осуществляет учет работников и посетителей, которые находились на объекте. Как преимущество считается возможность дистанционной идентификации лица.

Идентификация лиц, которые находятся на объекте, происходит с помощью их физических характеристик (отпечатков пальцев, голоса, сетчатки глаза и т.п.). Поскольку эти характеристики человека практически неповторимы, контроль допуска по их характеристикам является наиболее надежным и он применяется на очень важных и ценных объектах охраны. Но в процессе их применения надо помнить, что, во-первых, сегодня это пока очень дорогая техника, и, во-вторых, она имеет низкую «производительность», т.е. пропускную способность. Биометрический метод требует не менее 30 секунд времени, чтобы идентифицировать человека и пропустить, или заблокировать ее проход.

Соответственно элементам идентификации используют и устройства для чтения информации и принятие решения. Они бываю непосредственного контакта, если речь идет о карточках Виганда и карточки с магнитными лентами, идентификационные коды и биометрические и дистанционные методы.

В процессе конкретного решения вопроса о применении технических средств контроля следует учитывать следующие обстоятельства:

а) допустимость применения конкретной системы контроля доступа с учетом ценности охраняемого объекта, максимального количества лиц, которых надо идентифицировать, а также скорости обработки информации и принятия решения системой и количества пунктов контроля;

б) совместимость системы контроля с помещениями и оборудованием помещений (дверь, окна и т.п.). Часто технические устройства вступают в противоречие с помещениями, их архитектурой или естетикой;

в) пропускную способность технической системы;

г) адекватность стоимости системы ценности охраняемого объекта.

1. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

1.1 Актуальность

1.2 Цель

1.3 Задачи

2. ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

2.1 Эшелонированная защита

2.2 Составляющие эшелонированной системы защиты информации

2.2.1 Антивирусные программы

2.2.2 Протоколирование и аудит

2.2.3 Физическая защита

2.2.4 Аутентификация и парольная защита

2.2.5 Межсетевые экраны

2.2.6 Демилитаризованная зона

2.2.7 VPN

2.2.8 Система обнаружения вторжений

3. ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ

СПИСОК ИСПОЛЬЗОВАННЫХ ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

эшелонированный защита информация антивирусный

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ.

Изучение эшелонированной системы защиты информации в компьютерных системах «офисного» типа актуально в связи с постоянным ростом количества атак на сети крупных организаций с целью, например, копирования баз данных, содержащих конфиденциальную информацию. Такая система защиты является очень мощным средством против злоумышленников и может эффективно сдерживать их попытки несанкционированного доступа (НСД) к защищаемой системе.

1.2 Цель

Целью данной работы является изучение эшелонированной системы защиты компьютерных систем «офисного» типа.

1.3 Задачи

Для достижения поставленной цели необходимо решить следующие задачи:

Изучить принципы построения и работы эшелонированной системы безопасности;

Изучить независимые системы защиты, включаемые в эшелонированную систему защиты информации;

Определить требования, предъявляемые к системам защиты;

2. ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

2.1 Эшелонированная защита

Эшелонированная защита (англ. Defense in Depth) - концепция страхования информации, в которой несколько различных слоёв систем защиты установлены по всей компьютерной системе. Его предназначение - предоставлять избыточную защищенность компьютерной системы в случае неисправности системы контроля безопасности или при использовании злоумышленником некой уязвимости.

Идея эшелонированной защиты состоит в защите системы от любой атаки, используя, как правило, последовательно, ряд независимых методов.

Изначально эшелонированная защита являлась сугубо военной стратегией, позволяющей скорее не упредить и предотвратить, а отложить атаку противника, купить немного времени для того, чтобы правильно расположить различные меры защиты. Для более полного понимания можно привести пример: колючая проволока эффективно сдерживает пехоту, но танки легко переезжают её. Однако по противотанковым ежам танк проехать не может, в отличие от пехоты, которая их просто обходит. Но если их использовать вместе, то ни танки, ни пехота быстро пройти не смогут, и у защищающейся стороны будет время на подготовку.