Жизненный цикл клетки

Весь период существования – от возникновения до деления или гибели клетки называют клеточным циклом.

Вновь появившаяся клетка первоначально растет, дифференцируется, выполняет свои специфические функции – это время – период покоя .

Образование клеток возможно только путем деления, поэтому важной частью ЖЦК является митотический цикл, включающий подготовку к делению (интерфазу) и само деление.

Интерфаза включает 3 периода –

· пресинтетический - G1 - клетка растет, осуществляется синтез белка и РНК, накапливает богатые энергией в-ва. – продолжительность разная – около 10 часов в среднем.

· синтетический – G2 – удвоение генетического материала, необходима для того, чтобы вновь образовавшиеся клетки имели тот же геном, как и их предщественница.. продолжается синтез белка и РНК – около 9 часов.

· постсинтетический – G2 – клетка готовится к делению, накапливая энергию и белки, увеличивается кол-во митохондрий, делится центросома – фаза =4часа

продолжительность клеточного цикла зависит от типа клетки и от внешних факторов, таких как температура, кислород, питательные в-ва. Бактериальные клетки могут делиться каждые 20 мин, клетки кишечного эпителия – каждые 8-10 часов, а многие клетки нервной системы – не делятся никогда.

3 типа деления:

· амитоз - прямое деление, делится путем прямой перетяжки, наследственный материал распределяется неравномерно. Возможно образование двухядерных клеток. Амитоз- редкое явление, характерен для погибающих или измененных клеток – например, опухолевых.

· митоз - непрямое деление соматических клеток – в результате деления образуются 2 её точные копии. в быстро делящихся клетках, например, эмбриональных, ЖЦ практически совпадает с митотическим циклом. Это универсальный способ увеличения кол-ва или замещения погибших эукариот.клеток

· мейоз – редукционное деление половых клеток. Оно приводит к уменьшению содержания наследственного материала во вновь образовавшихся клетках, при этом в родительской клетке происходит однократное удвоение хромосом (репликация ДНК, как при митозе), затем следуют 2 цикла клеточных и ядерных делений. т.о. сохраняется постоянство набора генетических структур у потомков при слиянии половых клеток родителей

Основы цитогенетики. Строение и типы метафазных хромосом.

Хромосома – структурный элемент клеточного ядра дезоксирибонуклеиновой природы.

Хромосомы человека впервые наблюдали Арнольд (1879) и Флеминг(1882) в периоде митоза. Затем многие ученые изучали эти структуры клеточного ядра. Однако, только в 1955г. Трио и Леван установили, что в большинстве клеток человека – 46 хромосом. Открытие в 1959г патологических изменений в наборе хромосом при болезни Дауна привело к возникновению нового раздела генетики человека – учения о хромосомных болезнях.


Хромосомы – (окрашенные тельца) формируются в начале деления клеток из хроматина интерфазного ядра. Х – основные носители наследственной информации, передаваемой из поколения в поколение у большинства живых организмов.

Хроматин состоит из молекул ДНК , связанных белками. Эти нити можно рассмотреть только в электронный микроскоп. Они составлены из расположенных друг за другом микрочастиц – нуклеосом, Ø10нм.

Нуклеосома имеет белковый остов, вокруг которого закручена молекула ДНК.

Во время деления нити хроматина сильно спирализуются, закручиваются и утолщаются, формируя видимые в световой микроскоп хромосомы. Имеет белковый остов вокруг которого закручена молекула ДНК.

Именно поэтому, основные сведения о строении хромосом были получены во время митоза.

Так как моменту деления хромосомы удвоены, то в световой микроскоп они видны состоящими из 2-х нитей – хроматид. Они объединены между собой в области первичной перетяжки – центромера – она делит хромосому поперек и на 2 части – плечи (которые бывают короткие и длинные)

В зависимости от расположения центромеры различают 3 типа хромосом:

· Метацентрические – центромера в центре, плечи равны.

· Субметацентрические – центромера сдвинута к одному концу хромосом, плечи 1<2.

· Акроцентрические – визуально можно увидеть у хромосомы только длинные плечи.

· Некоторые хромосомы могут иметь дополнительные перетяжки – вторичные –спутник – если перетяжка близко к концу хромосомы. У человека спутника имеются у 5 пар хромосом – 13-15я и 21-22 пары.

Рост и развитие многоклеточных организмов связаны с делением клеток. За 24 ч у человека погибает и вновь возникает 5х10 11 клеток. Клетки крови, эпителия, костной ткани за год заменяются полностью.

В жизненном цикле размножающихся клеток различают ин терфазу - период между делениями - и собственно митоз.

В различных делящихся клетках продолжительность интерфазы от 10-12 ч до 20 сут. В течение этого периода продолжает функционировать и подготавливается к очередному митозу. При этом происходит редупликация (удвоение) хромосом, удвоение всех макромолекулярных образований цитоплазмы, центриолей клеточного центра, накапливаются структурные белки, идущие на построение веретена деления, создается необходимый запас энергии.

Рис. 10. Клеточный центр: 1 — центриоль, 2- центросфера, 3- астросфера, 4- ядро

Большую роль в делении клетки играет особый органоид - клеточный центр. Он расположен в цитоплазме и представляет собой 1-2 мелких тельца - центриоли (рис. 10). Центриоли, подобно митохондриям, содержат в своем составе ДНК, поэтому перед делением клетки каждая центриоль создает себе подобную.

Митоз

Универсальный способ деления клеток, который обеспечивает рост организма и составляет основу его развития. В результате митоза получаются две дочерние клетки, содержащие количество хромосом, одинаковое с исходной клеткой. При митозе между дочерними клетками равномерно распределяются и основные органоиды цитоплазмы.

Митотическое деление клетки подразделяют на четыре фазы: профазу, метафазу, анафазу и телофазу (рис. 11).

В профазе поляризуется: центриоли расходятся к противоположным полюсам. Между ними образуется веретено из тонких цитоплазматических нитей (микротрубочек), заостренное у полюсов (у центриолей) и широкое в центре (у экватора). Центриоли и ни ти веретена образуют митоти ческий аппарат клетки. Рас хождение центриолей начинается в ранней профазе, а полное формирование всего митотического аппарата обычно заканчивается к концу профазы.


Рис. 11.

а - интерфаза; б - д - профаза, во время которой наблюдается постепенное сокращение и конденсация хромосом (каждая из них составлена из двух хроматид); е - ж - проме тафаза, начинается образование веретена и исчезновение ядерной оболочки; э -и - мета фаза; к - анафаза; л - к - телофаза. Центромера изображена в виде светлого кружка в каждой хромосоме

Ядро клетки в течение профазы набухает; хроматиновые нити благодаря спирализации хромосом становятся более толстыми, хотя в большинстве случаев границы отдельных хромосом еще не выявляются. Позднее в результате дальнейшей спирализации хромосомы утолщаются и становятся различимы в виде отдельных нитей. В профазе уже видно, что хромосомы удвоены.

Профаза продолжается от 20 до 60 мин и заканчивается растворением оболочки ядра и ядрышка. Хромосомы после растворения ядерной оболочки оказываются в цитоплазме. Метафаза продолжается от 2 до 15 мин.

Хромосомы укорачиваются и утолщаются, что позволяет легко подсчитать их количество, определить форму и размеры.

Фиксированные препараты метафазы митоза дают возможность детально изучить морфологию хромосомного набора-кариотипа клетки.

Рис. 12.

1- спутник; 2 - короткое плечо хромосомы; 3 - центромера; 4 - волокна веретена; 5 - длинное плечо; 6 - вторичная перетяжка.

Кариотип характеризуется определенным числом и морфологией хромосом (рис. 12). Число хромосом - один из наиболее постоянных видовых признаков.

В клетках гороха содержится 14 хромосом, у речного рака-116. В клетках человека - 46 хромосом.

Наиболее сходные между собой хромосомы, имеющие одинаковое строение, называют гомологичными. В метафазе можно видеть, что каждая хромосома имеет «двойника» (гомолога), а вся совокупность метафазных хромосом представляет собой двойной, или, как принято говорить, диплоидный, набор. 46 хромосом человека составляют 23 пары (рис. 13).

Из 23 пар хромосом человека 22 пары одинаковы у мужчин и женщин. Это аутосомы (от номера 1 до номера 22). В 23-й паре хромосом имеется отчетливая половая дифференцировка: в клетках тела женщин находятся две крупные, вполне идентичные друг другу Х-хромосомы; у мужчин имеется только одна Х-хромосома, ее партнером у мужчин явля ется маленькая Y-хромосома. Х- и Y-хромосомы называют поло выми хромосомами.

Метафаза - наиболее короткий период митоза. В ней различают метакинез и истинную метафазу.

Метакинез начинается сразу после профазы. Его исходным моментом является разрыв ядерной мембраны, которая разрушается за счет повышения осмотического давления внутри ядра к концу профазы.

Рис. 13.

Разрыв ядерной мембраны приводит в движение хромосомы. По инерции они движутся вслед за фрагментами ядерной мембраны к периферии клетки, но в этот момент попадают под влияние нитей веретена. Нити веретена прикрепляются к центромерам хромосом и фиксируют их на короткое время в области экватора клетки, образуя материнскую звезду, или экваториальную пластинку.

Во время истинной метафазы разрываются связи между хроматидами в плечах хромосом и происходит удвоение центромеры. Такая поздняя редупликация центромеры удерживает хроматиды в пределах одной хромосомы до тех пор, пока не произойдет окончательная спирализация каждой хромосомы.

Нити веретена при рассматривании с помощью электронного микроскопа имеют вид тонких трубочек диаметром 150-200 Å. Это - белковые образования, они, как полагают некоторые авторы, аналогичны сократительным белкам мышц.

Если это так, в основе перемещения хромосом и мышечного сокращения лежат, очевидно, сходные механизмы.

Редупликация центромеры подготавливает начало анафазы.

Анафаза характеризуется тем, что хромосомы из плоскости экватора движутся к противоположным полюсам в среднем со скоростью около 1 мкм в минуту.

В анафазу из каждой пары хромосом одна отходит к одному полюсу, другая - к другому. Происходит распределение ранее удвоенных хромосом на две равные группы, которые дают начало ядрам дочерних клеток.

В анафазе митоза происходит важнейший процесс - точное распределение генетического материала между дочерними клетками.


Рис. 14.

А -профаза I: в этой воображаемой диплоидной клетке имеются две пары гомологичных хромосом (видны как одиночные нити); Б - профаза Iа: гомологичные хромосомы спариваются (конъюгируют), позднее в каждой хромосоме будут видны две хроматиды (на этой стадии происходит кроссинговер); В - метафаза I: ориентация спаренных хромосом в экваториальной плоскости, образование аппарата веретена; Г - анафаза I: гомологичные центромеры движутся к противоположным полюсам веретена, затем следует те лофаза I, и первое мейотическое деление заканчивается (отражена ядерная мембрана; хромосомы удлиняются); Д - интерфаза II, за которой следует профаза II и метафаза II: центромеры делятся, затем происходит миграция гомологичных хроматид к противоположным полюсам; Е - анафаза II; Ж - конечный результат; четыре гаплоидные клетки.

В движении хромосом к полюсам клетки ведущая роль принадлежит центромерам, которые активно перемещаются к полюсам клетки.

Условием, которое способствует движению хромосом в живой клетке, является понижение вязкости цитоплазмы. АТФ, необходимая для сокращения нитей веретена, поступает из митохондрий, которые в анафазе обычно располагаются в ряд, по наружной поверхности веретена.

Следует сказать, что причины движения хромосом в анафазе к полюсам клетки еще недостаточно изучены. Считают, что редуплицирующиеся центромеры имеют одноименный заряд и отталкиваются друг от друга. Полюсы клетки обладают притягательной силой по отношению к хромосомам. По мере расхождения центромер между ними формируются дополнительные нити веретена деления. По мере роста оно как бы расталкивает хромосомы к полюсам клетки.

После расхождения хромосом к полюсам клетки наступает последняя фаза митоза - телофаза.

В телофазе две группы хромосом собираются в довольно плотные комки, деспирализуются и становятся невидимыми. На каждом из полюсов вокруг хромосом появляются отдельные пузырьки, которые, сливаясь, формируют внутреннюю ядерную мембрану. Наружная ядерная мембрана возникает из пузырьков и цистерн эндоплазматической сети. Образуются два новых ядра. В каждом ядре обособляются ядрышки.

В телофазе делится и цитоплазма: в ней появляется в полюсе экватора борозда, которая углубляется и делит клетку пополам. Нити веретена исчезают.

Таким образом, в результате митоза из одной клетки образуются две дочерние клетки, обладающие точно таким же набором хромосом, как и материнская .

Ряд цитологов выделяют еще один своеобразный способ деления клетки - амитоз, в время как другие ученые не рассматривают этот процесс как деление. Ядро клетки постепенно удлиняется, перетягивается в форме восьмерки, после чего его половины расходятся к противоположным полюсам клетки. Вслед за этим делится и цитоплазма. Иногда при амитозе ядро делится, а разделение цитоплазмы не происходит, и тогда образуются многоядерные клетки.

При амитозе деление ядра происходит без образования митотического аппарата и без спирализации хромосом.

Ядро увеличивается без изменения строения и разделяется на два.

Различают несколько видов амитоза:

1)генеративный характерен для полиплоидных клеток. Деление ядра в этом случае обеспечивает увеличение поверхности, контактирующей с цитоплазмой;

2)дегенеративный происходит в стареющих и гибнущих клетках;

3)реактивный вызывается действием на клетку лучистой энергии, различных химических веществ, препятствующих митотическому делению клетки.

Амитоз имеет место при делении опухолевых клеток, часто наблюдается при регенерации тканей, обеспечивая быстрое восполнение травматических дефектов.

Мейоз

Среди клеток тела животных исключение составляют половые клетки. В них содержится одиночный, или гаплоидный, т. е. уменьшенный вдвое, набор хромосом.

В оплодотворенной яйцеклетке человека содержится диплоидный набор - 46 хромосом. При дроблении яйца и каждом последующем делении клеток хромосомы удваиваются и каждая из парных хромосом расходится в дочерние клетки, получающие каждая 46 хромосом. Если бы сперматозоид и яйцеклетка содержали диплоидный набор хромосом, после их слияния оплодотворенное яйцо получило бы 92 хромосомы. На самом деле этого не происходит.

В процессе эволюции возник и развился особый механизм, поддерживающий постоянство числа хромосом при оплодотворении. Этот механизм связан с особым типом клеточного деления, благодаря которому в половые клетки попадает гаплоидный набор хромосом. У человека половые клетки содержат 23 хромосомы, а после оплодотворения в зиготе объединяются 46 хромосом, одна половина которых принадлежит яйцеклетке, а другая - сперматозоиду.

При созревании половых клеток происходят два быстро следующих друг за другом деления, в результате которых число хромосом сокращается вдвое. Процесс деления клеток, ведущий к уменьшению числа хромосом в гаметах вдвое, называют мейозом (рис. 14).

Мейозу, как и митозу, предшествует подготовительная фаза, в течение которой хромосомы удваиваются, удваиваются и центриоли клеточного центра, накапливаются структурные белки, необходимые для построения веретена деления, происходит усиленное образование АТФ. Однако, в отличие от митоза, редупликация (удвоение) хромосом растянута во времени и продолжается в профазе первого мейотического деления.

В начальный период профазы хромосомы имеют вид тонких нитей. Затем они укорачиваются, и начинается их спирализация. В этот период гомологичные хромосомы плотно прикладываются друг к другу, происходит их конъюгация (временное сближение).

Через некоторое время между хромосомами возникают силы отталкивания, и они начинают отходить друг от друга, становится очевидным, что некоторые парные хромосомы обменялись гомологичными участками. Это явление (кроссинговер, или перекрест хромосом) обеспечивает перераспределение генетического материала, увеличивает наследственную изменчивость организмов.

В конце профазы сдвоенные хромосомы располагаются у плоскости экватора. В анафазу гомологичные хромосомы расходятся. У каждого полюса сосредоточивается гаплоидный набор хромосом.

В течение короткой телофазы формируются две клетки, каждая из которых уже имеет гаплоидный набор хромосом. Обе клетки снова приступают к делению. Второе деление протекает очень быстро, как обычный митоз, ему не предшествует интер фаза, поэтому содержание ДНК не удваивается и синтез белков не происходит.

Во втором делении каждая из хромосом, удвоение которой произошло еще в профазе первого мейотического деления (редукционного), расходится по дочерним клеткам, которые получают по одной хромосоме из каждой гомологичной пары.

В результате мейоза из одной половой клетки образуются четыре клетки, каждая из которых имеет половинное (гаплоидное) число хромосом.

Так в семенниках и яичниках образуются зрелые мужские и женские половые клетки, которые у человека содержат по 23 хромосомы.

При созревании женских половых клеток (овогенез ) из четырех образовавшихся в результате мейоза клеток только одна, обладающая большим размером, превращается в зрелую яйцеклетку, три маленькие клетки (также с гаплоидным набором хромосом) дегенерируют. При сперматогенезе (созревании сперматозоидов) каждая из четырех образовавшихся в результате мейоза клеток является зрелой с гаплоидным набором хромосом.

Статья на тему Деление клеток

Митоз - наиболее распространенный способ репродукции клеток. Универсальность этого способа деления клеток связана с тем, что он обеспечивает образование генетически равноценных клеток и сохраняет преемственность хромосом в ряду клеточных поколений.

Биологическое значение митоза:

1. Равномерное распределение генетического материала.

2. Образование идентичных с материнской двух дочерних клеток с диплоидным набором хромосом.

3. Обеспечивает рост и регенерацию.

4. Обеспечивает бесполое размножение.

5. Является способом деления соматических клеток.

В процессе митоза последовательно протекают фазы: профаза, прометафаза, метафаза, анафаза, телофаза.

Профаза - происходит спирализация, укорочение, утолщение хроматиновых нитей. Наблюдается удвоение центриолей и расхождение их к полюсам. Начало образования нитей веретена деления. В конце – наблюдается разрушение ядрышка и ядерной оболочки. Генетическая характеристика: 2n 2 хроматиды 4С.

Метафаза - хромосомы в животных клетках располагаются в упорядоченном состоянии в области экватора. Образуется метафазная пластинка. В растительных клетках хромосомы лежат неупорядоченно. Завершается образование нитей веретена деления. Хромосомы связаны центромерами с нитями веретена деления. Нити веретена, которые крепятся к хромосомам, называются хромосомными, а которые идут к полюсам - непрерывными. Генетическая характеристика: 2n 2 хроматиды 4С.

Анафаза - хромосомные нити веретена сокращаются. К противоположным полюсам расходятся хроматиды, которые принято называть дочерними хромосомами. На каждом полюсе генетическая характеристика: 2n 1хроматида 2С.

Телофаза - дочерние хромосомы, разошедшиеся к полюсам, деспирализуются, теряют ясные очертания, вокруг них формируются ядерные оболочки, восстанавливается ядрышко. Клеточный центр теряет активность. Начинается цитокинез - деление цитоплазмы. Итогом деления является образование двух диплоидных клеток.

Деление в растительной и животной клетках происходит сходно. Но в клетках высших растений отсутствует клеточный центр. Цитотомия в животных клетках происходит путем перетяжки (образование борозды), которая, углубляясь, делит клетку на две части. В клетках растений формируется в центре срединная пластинка, которая затем растет к периферии.

Митотический цикл клетки - совокупность процессов подготовки клеток к делению и само митотическое деление. Если дочерние клетки, или клетка, сразу же приступают к подготовке к следующему митозу, то их митотический цикл совпадает с жизненным циклом (ткани эмбриона). В других случаях дочерние клетки подвергаются дифференцировке и выполняют различные функции (пресинтетический период удлиняется). Их жизненный цикл заканчивается смертью клетки (у нервных клеток G1 - в течение всей жизни).

Продолжительность каждого из периодов митотического цикла и фаз митоза различна и длится от нескольких минут до нескольких часов, что зависит от ряда причин: типа тканей, физиологического состояния организма, внешних факторов (t, свет, химические вещества). Так суточный ритм митотической активности у ночных животных характеризуется max и min митозов - утром, у дневных - в вечерние часы. Оказывают влияние и факторы внутренней среды: нейрогуморальные механизмы, осуществляемые нервной системой и гормонами, а также продукты распада тканей.

Важную роль играют факторы, обеспечивающие возможность вступления клеток в деление. Четко доказано, что все синтетические процессы в клетке, готовящейся к делению, находятся под контролем ее генетического аппарата. Гены, контролирующие этот процесс, находятся в разных хромосомах. Активность генов объясняется гипотезой Жакоба и Мано (1961). Советские ученые Л. Н. Бляхер (1954), И. А. Уткин (1959) показали важную роль нейрогуморальной регуляции митотической активности. Они установили, что рефлекторный характер регуляции клеточных делений влияет опосредованно - через сдвиг гормонального равновесия. Установлено, что усиление секреции адреналином тормозит митотическую активность, тогда как гормоны щитовидной железы вызывают усиление митоза. Удаление надпочечников приводит к выключению эффекта торможения митоза. На митотический цикл также влияют: суточный ритм митотический активности, факторы внешней среды (свет, температура) нейрогуморальные механизмы, продукты распада тканей.

Эндомитоз – один из видов митоза, суть которого заключается в редупликации хромосом. Без разрушения ядерной оболочки и без деления клетки (образование полиплоидов). Вследствие этого в клетке происходит умножение числа хромосом, иногда в десятки раз по сравнению с исходным. Эндомитоз встречается в интенсивно функционирующих клетках различных тканей: клетках печени, тканях нематод, насекомых, ракообразных, в корешках некоторых растений. Допускают, что эндомитоз возникает в процессе эволюции, как один из вариантов митоза.

Политения – многократное воспроизведение в хромосомах количества хромонем без увеличения их числа в клетке. При политении выпадают все фазы митотического цикла, кроме репродукции хромонем. Политения встречается у двукрылых насекомых, инфузорий, некоторых растений. Используется для построения карт хромосом, а также обнаружения хромосомных перестроек.

Мейоз – деление, обеспечивающее образование половых клеток.

Значение мейоза

1. Обеспечивает образование половых клеток с гаплоидным набором хромосом.

2. Обеспечивает поддержание постоянства числа хромосом в кареотипе.

3. Обуславливает образование большого количества новых комбинаций генов.

4. Является источником комбинативной изменчивости.

5. Обеспечивает половое размножение.

Состоит из двух последовательных делений:

1. Мейоз 1 редукционное;

2. Мейоз II эквационное.

Мейоз 1.

Профаза 1 – 5 стадий: 2n 2хр 4С.

Лептотена - хромосомы формы нитей, различимых в микроскоп.

Зиготена – конъюгация (спаривание) гомологичных хромосом, образование бивалентов.

Пахитена – происходит обмен участками гомологичных хромосом - кроссинговер. И образование рекомбинантных генов.

Диплотена – отталкивание между гомологичными хромосомами в области центромер. Остаются связанными в области перекреста. Эти места называются хиазмами.

Диакенез – спирализация максимальная, биваленты располагаются по периферии ядра. Исчезает ядрышко и ядерная оболочка. Центриоли расходятся к полюсам, начало образования веретена деления.

Метафаза 1 – биваленты выстраиваются в экваториальной плоскости, центромерами прикрепляются к нитям веретена деления. Генетическая характеристика: 2n 2хр. 4С.

Анафаза 1 – расхождение гомологичных хромосом к полюсам клетки. На каждом полюсе формируется гаплоидный набор хромосом. Каждая хромосома состоит из 2 хроматид. Генетическая характеристика: n 2хр. 2С.

Телофаза 1 – характерна для клеток животных при этом образуются 2 клетки с гаплоидным набором. Клетки растений сразу переходят в мейоз II.

Между мейозом I и мейозом II наблюдается интеркинез, в котором репликация ДНК отсутствует.

Мейоз II – точная копия митоза.

Профаза 2 - непродолжительная.

Метафаза 2 - образование экваториальной пластинки.

Анафаза 2 - расхождение сестринских хроматид. n 1 хр. 1С

Телофаза 2 - формирование ядер, деление цитоплазмы и образование 4 гаплоидных клеток. n 1 хр. 1С

Амитоз, или прямое деление, представляет собой деление ядра без подготовки аппарата деления, спирализации хромосом. Хромосомы распределяются произвольно.

Прямое деление характеризуется первоначально перешнуровкой ядрышка, затем ядра и цитоплазмы. Ядро может делиться на две равномерные части - равномерный амитоз, или две неравномерные части - неравномерный амитоз, либо ядро делится на несколько частей - фрагментация, шизогония. Иногда после деления ядра цитоплазма не делится, и возникают многоядерные клетки - амитоз без цитотомии. В зависимости от факторов, обуславливающих амитоз, выделяют три его вида: генеративный, реактивный, дегенеративный.

Генеративный амитоз отмечается при делении высоко специализированных полиплоидных клеток. Наблюдается у инфузории при делении макронуклеуса, а также в некоторых клетках млекопитающих (печени, эпидермиса).

Реактивный амитоз выявляется при различных повреждающих воздействиях: ионизирующего облучения, нарушении обменных процессов, голодании, нарушении нуклеинового обмена и денервации ткани. Этот вид амитоза обычно не завершается цитотомией и приводит к образованию многоядерных клеток. Вероятно, его следует рассматривать как компенсаторную реакцию, приводящую к увеличению поверхности обмена между ядром и цитоплазмой.

Дегенеративный амитоз возникает в стареющих клетках с угасающими жизненными свойствами. Этот вид представлен фрагментацией и почкованием ядер. Он не имеет отношения к репродукции клеток. Появление дегенеративных форм амитоза служит одним из признаков некробиотических процессов.

Прямое бинарное деление – характерно для прокариот. Включает репликацию кольцевой ДНК и далее – деление цитоплазмы с образованием двух клеток.

Вопрос 6

Клеточная пролиферация – увеличение числа клеток путем митоза, приводящее к росту ткани, в отличие от другого способа увеличения ее массы (например, отек). У нервных клеток пролиферация отсутствует.

Во взрослом организме продолжаются процессы развития, связанные с делением и специализацией клеток. Эти процессы могут быть как нормальными физиологическими, так и направленными на восстановление организма вследствие нарушения его целостности.

Значение пролиферации в медицине определяется способностью клеток разных тканей к делению, с делением клеток связан процесс заживления ран и восстановление тканей после хирургических операций.

Пролиферация клеток лежит в основе регенерации (восстановления) утраченных частей. Проблема регенерации представляет интерес для медицины, для восстановительной хирургии. Различают физиологическую, репаративную и патологическую регенерацию.

Физиологическая – естественное восстановление клеток и тканей в онтогенезе. Например, смена эритроцитов, кожного эпителия.

Репаративная – восстановление после повреждения или гибели клеток и тканей.

Патологическая – разрастание тканей не идентичных здоровым тканям. Например, разрастание рубцовой ткани на месте ожога, хряща - на месте перелома, размножение клеток соединительной ткани - на месте мышечной ткани сердца, раковая опухоль.

В последнее десятилетие принято разделять клетки тканей животных по способности к делению на три группы:

1. Лабильные.

2. Стабильные.

3. Статические.

К лабильным относятся клетки, которые быстро и легко обновляются в процессе жизнедеятельности организма (клетки крови, эпителия, слизистой ЖКТ, эпидермиса и др.).

К стабильным относят клетки таких органов, как печень, поджелудочная железа, слюнные железы и др., которые обнаруживают ограниченную способность к размножению. Последняя, проявляется обычно при повреждении органа.

К статическим клеткам относят клетки поперечно-полосатой мышечной и нервной ткани, клетки которые, как считает большинство исследователей, не делятся.

Изучение физиологии клетки имеет важное значение для понимания онтогенетического уровня организации живого, механизмов саморегуляции клетки, обеспечивающих целостную функцию всего организма.


Похожая информация.


Холин <#"536938.files/image005.gif">

Рис. Цикл развития сосны обыкновенной: а - ветка с шишками; б- женская шишка в разрезе; в - семенная чешуя с семязачатками; г - семязачаток в разрезе; д -мужская шишка в разрезе; е - пыльца; ж - семенная чешуя с семенами; 1 - мужская шишка; 2 - молодая женская шишка; 3 - шишка с семенами; 4 - шишка после высыпания семян; 5 - пыльцевход; 6 - покров; 7 - пыльцевая трубка со спермиями; 8 - архегоний с яйцеклеткой; 9 - эндосперм.

Характеристика семейства Капустные (Крестоцветные). Укажите наиболее распространенные овощные, сорные и дикорастущие растения этого семейства (не менее 15 видов)

Семейство крестоцветные (Brassicaceae или Cruciferae)

Крестоцветные настолько близки к каперсовым, что между ними не всегда легко провести границу. Некоторые роды, например род диптеригиум (Dipterygium), одними ботаниками включается в семейство каперсовые, а другими - в крестоцветные. В семействе насчитывается до 380 родов и. около 3200 видов. Расселены они по земному шару крайне неравномерно. В основном сконцентрированы в умеренной зоне северного полушария, главным образом в Старом Свете. В тропиках представлены единичными родами, приуроченными к горным областям, встречаются там также в интродукции и как сорняки. Небольшое число крестоцветных, произрастающих в южном полушарии, имеет узколокальную приуроченность.

Крестоцветные успешно приспосабливаются к самым разнообразным местообитаниям. Одни из них приурочены к крайним условиям высокогорий, достигая рубежей растительности (4500-5700 м над уровнем моря), где вместе с лишайниками являются пионерами растительного покрова; другие произрастают по морским побережьям; одни в своем распространении продвигаются далеко на север и характерны для арктических областей; другие являются обитателями пустынь, полупустынь и степей. Широко представлены крестоцветные также в лесах, среди степной растительности, на увлажненных местах и даже в воде, но все же определенно преобладают среди них растения засушливых и сухих местообитаний. Однако, несмотря на такую высокую пластичность в приспособлении к условиям среды, наблюдается относительно небольшое разнообразие жизненных форм. Большинство крестоцветных - однолетние или многолетние травы, есть и полукустарнички, у которых одревесневает нижняя часть стебля. Кустарники представлены единичными, преимущественно африканскими и макаронезийскими видами, такими, как, например, катран кустарниковый (Crambe fruticosa) на острове Мадейра, достигающий в высоту 2 м, виды рода синапидендрон (Sinapidendron, Макаронезия), гелиофила сизая (Heliophila glauca - Капская область) или фолейола Биллота (Foleyola billotii - Сахара), достигающими в высоту до 1,5-2 м. Такие виды, как гелиофила лазящая (H. scandens), и виды южноамериканского рода кремолобус (Cremolobus) габитуально сближаются с лианами. Многие из высокогорных видов имеют подушкообразную форму, способствующую задержанию тепла. Листья крестоцветных очередные, причем нижние часто образуют прикорневую розетку. У некоторых видов наблюдается гетерофиллия. Например, у клоповника пронзеннолистного (Lepidium perfoliatum) розеточные листья рассечены на узкие линейные доли, тогда как стеблевые цельные, округлые, стеблеохватывающие. Среди крестоцветных встречаются растения как совершенно голые, так и опушенные простыми или вильчато или звездчато разветвленными волосками. Многолучевые звездчатые волоски зачастую напоминают чешуйки. В опушении участвуют также железистые волоски и так называемые мальпигиевые волоски - распростертые, двураздельные, прикрепляющиеся серединой. Для крестоцветных характерны верхушечные кистевидные или щитковидные, обычно (или за редким исключением) безлистные соцветия, которые иногда бывают сильно укороченными, почти головчатыми, или же, наоборот, вытянутыми, колосовидными. Необычный облик имеет американский каулантус вздутый (Caulanthus inflatus,), у которого ось соцветия сильно веретеновидно утолщена и сидящие на ней цветки, а затем плоды создают впечатление каулифлории. Цветки обычно лишены как прицветников, так и прицветничков, не крупные, зачастую очень мелкие, невзрачные, но немало также красиво расцвеченных, придающих растению большую декоративность.

По своему строению они крайне однообразны. Чашелистики, расположенные в два круга (по 2), у основания могут быть мешковидными, и в таких случаях в эти вместилища стекает нектар. Лепестков также 4, свободных, расположенных крестообразно (откуда и название крестоцветные). В окраске лепестков преобладают желтый и белый цвета, но нередки также растения с фиолетовыми, розоватыми, вплоть до пурпурных цветками. Лепестки в основном в верхней части более широкие. Они в большинстве случаев цельные или выемчатые, но есть среди крестоцветных также виды с лопастными (североамериканский род вареа - Warea), перисторассеченными и даже реснитчато-бахромчатыми (у мексиканской орнитокарпы - Ornithocarpa, например) лепестками. Тычинок обычно 6, расположенных в 2 круга. Из них 2 боковые (наружный круг) короткие, 4 срединные более длинные. Иногда срединные срастаются по две своими нитями. В редких случаях все тычинки одинаковой длины или же по 3 разной длины. Число их иногда может сокращаться до 4 и даже до 2 или же, как у долгонога (Macropodium), достигает 10. У ряда видов тычинки снабжены придатками или же их нити разрастаются в виде зубцов и крыльев. Гинецей из 2 плодолистиков. По шву срастания плодолистиков образуется ложная перегородка, делящая завязь на 2 гнезда.

Обычно завязь сидячая, но у некоторых видов она сидит на довольно длинном гинофоре (сходство с каперсовыми). Особенности строения семязачатков играют немаловажную роль в систематике крестоцветных. Семядоли обычно плоские, но бывают и вдоль сложенными, как у капусты, реже поперек сложенными, как у гелиофилы (Heliophila), или спирально закрученными (свербига - Bunias). По расположению корешка зародыша по отношению к семядолям они бывают краекорешковыми и спинкокорешковыми.

Если строением всех остальных органов крестоцветные довольно однообразны, то этого нельзя сказать об их плодах, признаки строения которых наиболее широко используются в систематике семейства (рис. 31). Удлиненные плоды, длина которых значительно превышает ширину, называются стручками, короткие же - стручочками. И те и другие могут быть раскрывающимися двумя створками или нераскрывающимися. У раскрывающихся плодов после опадания створок на плодоножках остается рамка (как у некоторых каперсовых), перетянутая ложной перегородкой. Большой популярностью, например, пользуются виды лунника (Lunaria), рамки крупных овальных стручочков которого весьма декоративны. У нераскрывающихся стручочков часто створки сильно уплотняются и стручочки становятся ореховидными. Особый интерес представляют двучленные плоды, состоящие из верхнего, всегда нераскрывающегося членика и нижнего раскрывающегося или нераскрывающегося. В одних случаях верхний членик бывает бессемянным, в других нижний, в большинстве случаев оба членика содержат семена. Среди двучленных плодов также различаются стручки или стручочки. Плоды крестоцветных сильно варьируют также по величине, форме створок и различными выростами на них.

Крестоцветные приспособлены как к перекрестному опылению, так и к самоопылению. Основными опылителями являются мухи, пчелы, шмели; некоторые виды, например левкоя (Matthiola) или вечерницы (Hesperis,), опыляются в ночное время бабочками. Пчелы привлекаются запахом медоносных видов, а также наиболее яркими цветками. Те виды, у которых цветки мелкие, невзрачные, посещаются преимущественно мухами. Привлечение насекомых достигается также цветовыми контрастами, иногда возникающими в процессе цветения и плодоношения. Так, у некоторых видов с неприметными мелкими цветками, например у веснянки (Erophila), мелкие белые лепестки начинающих плодоносить нижних цветков соцветия не опадают, а вдвое увеличиваются и прижимаются к незрелым плодам, имеющим фиолетовый оттенок. Этим создается как бы ореол вокруг начинающих распускаться цветков. В другом случае, например у ярутки полевой (Thlaspi arvense), у которой цветки также мелкие, белые, у отцветающих цветков чашелистики становятся желтыми. У видов иберийки (Iberis) броскость обеспечивается значительно более крупными наружными лепестками краевых цветков соцветия, наподобие многих зонтичных. У некоторых видов гулявника (Sisymbrium), бурачка (Alyssum), зубянки (Dentaria) этот эффект достигается за счет того, что лепестки цветков с уже завязавшимися плодами не опадают, начинают увеличиваться в размерах, тем самым привлекая насекомых к остальным распускающимся цветкам.

Перекрестное опыление у крестоцветных обеспечивается благодаря присущей им дихогамии. Для большинства из них характерна протогиния, протандрия наблюдается крайне редко. В тех случаях, когда перекрестное опыление по какой-либо причине не может осуществиться (обильные дожди, сильная жара, отсутствие опылителей), крестоцветные опыляются благодаря способности к самоопылению (автогамия). Механизм комбинированного опыления можно наблюдать, например, у горчицы полевой (Sinapis arvensis) или у сердечника лугового (Cardamine pratense). В начале цветения пыльники длинных тычинок поворачиваются кнаружи, вследствие чего их пыльца не попадает на рыльце своего цветка, но может прилипнуть к бокам насекомых-опылителей, проникающих в глубь цветка к основанию тычинок за нектаром. Однако если рыльце не опылялось чужой пыльцой, то к концу цветения его опыляют короткие тычинки, которые за это время достигают одного с ним уровня. В ненастную же погоду, когда насекомых нет, пыльники длинных тычинок не отворачиваются и опыляют рыльце своего цветка.

Есть среди крестоцветных и такие растения, у которых в начале цветения тычинки целиком отклоняются кнаружи, а затем приподнимаются, приближают пыльники к рыльцу и опыляют его. У кресс-салата (Lepidium sativum), чесночника черешкового (Alliaria petiolata), брайи альпийской (Braya alpina) в начале цветения все тычинки короче рыльца, затем 4 из них удлиняются и соприкасаются пыльниками с рыльцем. Однако лишь одна тычинка опорожняет пыльцу на свое рыльце, остальные пыльники раскрываются позже, сохраняя пыльцу для перекрестного опыления.

Можно привести и такие примеры, когда у одних видов одного и того же рода преобладает самоопыление, у других - перекрестное. Так, ярутка альпийская (Thlaspi alpina) всегда способна к самоопылению, так как к концу цветения тычинки наклоняются над рыльцем. И наоборот, ярутка горная (T. montana) преимущественно перекрестноопыляющаяся, так как у большинства растений тычинки короче рыльца. Исключительно перекрестноопыляющиеся растения можно встретить у резухи Констанца (Arabis constancii): рыльца у них выставляются из почки еще до распускания цветка и в дальнейшем, когда тычинки достигают его уровня, оно от них отворачивается в сторону так, что не может быть опылено их пыльцой. У таких растений вероятность самоопыления исключается еще и биохимической несовместимостью пыльцы и поверхности рыльца - своя пыльца не прорастает.

Среди крестоцветных есть также сугубо самоопыляющиеся растения. К их числу относятся никогда не посещаемые насекомыми виды австралийского рода стенопеталум (Stenopetalum), у которых иногда даже образуются клейстогамные цветки. Это можно рассматривать как приспособление к суровым условиям Западной и Южной Австралии, которые не всегда благоприятствуют опылению. У другого австралийского растения - геококкуса крошечного (Geococcus pusillus,) - все цветки клейстогамные. Благодаря длинным, направленным вниз цветоножкам они зарываются в землю и там плодоносят (геокарпия). Частичная клейстогамия характерна для бразильского сердечника марьелистного (Cardamine chenopodiifolium), у которого, помимо нормальных цветков верхушечного соцветия, у основания стебля образуются клейстогамные цветки, также зарывающиеся в землю. В редких случаях, при чрезмерном увлажнении, затоплении, клейстогамия проявляется у некоторых видов клоповника (Lepidium), шильника водяного (Subularia aquatica), при повышенной сухости - горчицы полевой.

Как совершенно исключительное явление для крестоцветных можно рассматривать анемофилию, которая наблюдается обычно у безлепестной кергеленской капусты, или принглеи (Pringlea antiscorbutica,). Успешному ветроопылению этого островного субантарктического вида способствуют длинные, выставляющиеся из цветка тычинки, длинные нитевидные сосочки на рыльце и густое колосовидное соцветие.

К распространению плодов и семян крестоцветные приспособлены довольно разнообразно. Многие из них относятся к числу анемохоров. Это в основном виды с крылатыми или пузыревидно вздутыми плодами, многие виды с мелкими легкими семенами, легко разносимыми ветром, или с семенами, отороченными крылом. Иногда верхние членики двучленных плодов опадают вместе с одной из створок нижнего членика или с частью перегородки, что также повышает парусность.

Есть среди крестоцветных также целый ряд видов, имеющих на плодах крючковидные выросты. Благодаря этому они цепляются за шерсть животных и разносятся ими. Из зоохорных видов весьма любопытен мирмекохорный клоповник пузырчатый (Lepidium vesicarium), растения которого часто концентрически располагаются вокруг муравейников, что можно видеть на Араратской равнине в Армении.

В некоторых случаях семена разбрасываются благодаря «усилиям» самого растения. Так, у сердечника недотроги (Cardamine impatiens) и сердечника шершавого (C. hirsuta) створки стручков раскрываются с такой силой, что семена отлетают на значительное расстояние. Довольно необычен другой вид сердечника, у которого, помимо стручков, в пазухах листьев образуются бурые луковички, которые, опадая, прорастают. Широкой известностью как перекати-поле пользуется так называемая иериохонская роза, или анастатика (Anastatica hierochimtica). У этого небольшого однолетнего растения, произрастающего в пустынных областях Западной Азии и севера Африки, плоды созревают к началу засушливого сезона. К этому времени его многочисленные ветви плотно сжимаются и округлые плоские стручочки остаются внутри комочка. Приняв шаровидную форму, высохший стебель зачастую отрывается ветром от корня и перекатывается. С наступлением дождей смоченные ветви вновь выпрямляются, этим и напоминая распускающуюся розу. Именно тогда, при обильном увлажнении, стручочки вскрываются (гигрохазия) и рассеивают семена. Гигрохазия вообще присуща большинству крестоцветных с трудно раскрывающимися плодами. Семена же нераскрывающихся плодов, защищенные от неблагоприятных условий плотным футляром, прорастают лишь после его сгнивания. Для многих видов, приспособленных к сухим условиям, характерно ослизнение семенной оболочки (миксоспермия). К слизи прилипают мельчайшие частицы почвы, которые закрепляют семена и предохраняют их от заноса в несвойственные условия среды.

Одной из особенностей многих крестоцветных, значительно повышающей их приспособительные возможности, является гетерокарпия в самых разнообразных ее проявлениях. В одних случаях разнятся части плода (гетероартрокарпия), как это наблюдается у многих видов с двучленными плодами, в других случаях - плоды целиком. Гетерокарпия обеспечивает комбинированные способы распространения, а также более надежную сохранность семян и возможность их прорастания при изменчивых условиях. Одним из примеров комбинированных антропо-, гидро- и анемохории могут служить особенности распространения двучленных плодов морской горчицы (Cakile maritima), обитающей на морских побережьях Обе части плода содержат по одному семени. Верхние членики благодаря сильно развитой губчатой ткани, снаружи покрытой толстым кожистым слоем, хорошо держатся на воде и разносятся морскими течениями. Нижние членики остаются на стеблях, которые после усыхания отрываются от корня и перекатываются ветром. Поскольку морская горчица часто растет вблизи портов, верхние части ее плодов зачастую вместе с грузом попадают на судна и разносятся на дальние расстояния. Именно таким путем «уроженка» Средиземноморья морская горчица в настоящее время широко распространена за пределами Старого Света и успешно натурализовалась в Америке и Австралии, куда проникла вместе с первыми колонистами

Этому, несомненно, способствовала и ее высокая жизнеспособность, о чем свидетельствует один из любопытных экспериментов природы. В ноябре 1963 г. в Атлантическом океане, в 20 милях южнее Исландии, вследствие извержения подводного вулкана образовался новый остров. Первым сосудистым растением на этом острове оказалась морская горчица, обнаруженная там уже в июле 1965 г. Морскими течениями распространяются также плоды катрана морского (Crambe maritima).

Хозяйственное значение крестоцветных трудно переоценить. Овощные, масличные, кормовые и медоносные культуры имеют среди них наиболее широкую известность, но основная роль принадлежит, конечно, капусте во всем многообразии ее сортов. Капусту возделывали еще в доисторические времена, и первые сведения о ней восходят к неолиту. Многие исследователи, начиная с Ч. Дарвина, считают, что все существующие в настоящее время культурные формы капусты происходят от дикорастущей формы капусты огородной (Brassica oleracea), другие - от рассматриваемого в качестве самостоятельного вида капусты лесной (Brassica sylveslris), третьи связывают их с целым рядом средиземноморских видов. Ни одно растение в течение нескольких тысячелетий не дало человеку столь обширного материала для отбора, как капуста. Наибольшей популярностью пользуется капуста огородная, множество форм и сортов которой возделывают на всех континентах. Из них капуста кочанная - основное пищевое растение стран умеренных широт. Неоспоримы вкусовые качества таких сортов, как кольраби, цветной капусты и ее разновидности брокколи.

Многие местные сорта особо предпочитаются населением отдельных стран. Так, одними из древнейших культурных растений, возделываемых в Китае и Японии, являются капуста китайская (B. chinensis) и капуста пекинская (B. pekinensis). Как овощные растения среди крестоцветных широко известны также различные сорта редьки и редиса (Raphanus sativus), как острые приправы - хрен (Armoracia rusticana) и горчица сарептская (Brassica juncea). Одной из возделываемых садово-огородных культур является кресс-салат, в больших масштабах выращиваемый на Кавказе. В качестве салата употребляют также ряд дикорастущих крестоцветных, как, например, ложечница (Cochlearia), индау (Eruca sativa), сурепка (Barbarea vulgaris), жеруха (Nasturtium officinale) и многие другие, а пастушью сумку (Capsella bursa-pastoris) уже более 100 лет в Китае разводят как овощ. Молодые побеги и черешки листьев катрана морского, или морской капусты (Crambe maritima), часто употребляют подобно спарже, а в Средней Азии из корней катрана Кочи (C. kotschyana) изготавливают муку, из которой выпекают лепешки. Большое хозяйственное значение имеет ряд возделываемых масличных культур: рапс (Brassica napus var. napus), горчица сарептская, горчица черная (Brassica nigra), горчица белая (Sinapis alba), рыжик (Camelina saliva), катран абиссинский (Crambe abyssinica). Из них в умеренных широтах наиболее урожайное масличное растение - рапс, семена которого содержат до 50% масла. Оно имеет сугубо техническое применение - его используют при закалке сталей, после специальной обработки оно хорошо вулканизируется, образуя каучукообразную массу (фактис), которую применяют для смягчения твердых каучуков и изготовления карандашных резинок. Масло горчицы сарептской имеет пищевое применение, главным образом в кондитерской и хлебопекарной промышленности и при изготовлении маргарина и консервов, а порошок (жмых) представляет собой столовую горчицу. Рыжик - единственное культурное растение среди крестоцветных, дающее полувысыхающее масло. Его используют в мыловарении, для изготовления олифы и как смазочное для тракторов. В США как жиро-масличное вводится в культуру высокоурожайная лекерелла Фендлера (Lesquerella fendleri), семена которой не осыпаются и поддаются уборке комбайном. Ее в засушливых районах рекомендуют даже вместо пшеницы. Большинство масличных культур одновременно являются прекрасными медоносами. Немало медоносных и эфиромасличных растений есть и среди дикорастущих крестоцветных.

Способность к делению — важнейшее свойство клеток. Без деления невозможно представить себе увеличение числа одно клеточных существ, развитие сложного многоклеточного организма из одной оплодотворенной яйцеклетки, возобновление клеток, тканей и даже органов, утраченных в процессе жизнедеятельности организма. Деление клеток осуществляется поэтапно. На каждом этапе деления происходят определенные процессы. Они приводят к удвоению генетического материала (синтезу ДНК) и его распределению между дочерними клетками. Период жизни клетки от одного деления до следующего называется клеточным циклом.

Амитоз

Амитоз, или прямое деление, — это деление интерфазного ядра путем перетяжки без образования веретена деления (хромосомы в световом микроскопе вообще неразличимы). Такое деление встречается у одноклеточных организмов (например, амитозом делятся полиплоидные большие ядра инфузорий), а также в некоторых высокоспециализированных клетках растений и животных с ослабленной физиологической активностью, дегенерирующих, обреченных на гибель, либо при различных патологических процессах, таких как злокачественный рост, воспаление и т. п. Амитоз можно наблюдать в тканях растущего клубня картофеля, эндосперме, стенках завязи пестика и паренхиме черешков листьев. Такой тип деления характерен для клеток печени, хрящевых клеток, роговицы глаза. Очень часто при амитозе наблюдается только деление ядра, в этом случае могут возникнуть двух- и многоядерные клетки. Если же за делением ядра следует деление цитоплазмы, то распределение клеточных компонентов, как и ДНК, осуществляется произвольно. Амитоз в отличие от митоза является самым экономичным способом деления, так как энергетические затраты при этом весьма незначительны. К амитозу близко клеточное деление у прокариот. Бактериальная клетка содержит только одну, чаще всего кольцевую молекулу ДНК, прикрепленную к клеточной мембране. Перед делением клетки ДНК реплицируется, и образуются две идентичные молекулы ДНК, каждая из которых также прикреплена к клеточной мембране. При делении клетки клеточная мембрана врастает между этими двумя молекулами ДНК, так что в конечном итоге в каждой дочерней клетке, оказывается, по одной идентичной молекуле ДНК. Такой процесс лучил название прямого бинарного деления.

Подготовка к делению. Эукариотические организмы, состоящие из клеток, имеющих ядра, начинают подготовку к делению на определенном этапе клеточного цикла, в интерфазе. Именно в период интерфазы в клетке происходит процесс биосинтеза белка, удваиваются все важнейшие структуры клетки. Вдоль исходной хромосомы из имеющихся в клетке химических соединений синтезируется ее точная копия, удваивается молекула ДНК. Удвоенная хромосома состоит из двух половинок хроматид. Каждая из хроматид содержит одну молекулу ДНК. Интерфаза в клетках растений и животных в среднем продолжается 10-20 ч. Затем наступает процесс деления клетки — митоз.

Митоз

Митоз (от греч. Mitos- нить) непрямое деление, — основной способ деления эукариотических клеток. Митоз — это деление ядра, которое приводит к образованию двух дочерних ядер, в каждом из которых имеется точно такой же набор хромосом, что и в родительском ядре. Вслед за делением ядра обычно следует деление самой клетки, поэтому часто термином — «митоз» обозначают деление клетки целиком. Митоз впервые наблюдали в спорах папоротников, хвощей плаунов Г. Э. Руссов, преподаватель Дерптского университета в 1872 г. и русский ученый И. Д. Чистяков в 1874 г. Детальные исследования поведения хромосом в митозе были выполнены немецким ботаником Э. Страсбургером в 1876-1879 гг. на растениях и немецким гистологом В. Флеммингом в 1882 г. на животных.

Рис. 1. Схематическое изображение митоза в животных клетках

Во время интерфазы при подготовке клетки к делению происходит репликация ДНК. Во время профазы ядерная оболочка разрушается и между двумя центриолями формируется веретено. На стадии метафазы хромосомы располагаются в экваториальной плоскости клетки. Когда наступает анафаза, удвоившиеся хромосомы (называемые хроматидами) расходятся. На стадии телофазы хромосомы достигают полюсов веретена, клетка начинает разделяться на две дочерние клетки. По числу и типу хромосом дочерние клетки идентичны материнской

Митоз представляет собой непрерывный процесс, но для удобства изучения биологи делят его на четыре стадии в зависимости оттого, как выглядят в это время хромосомы в световом микроскопе. В митозе выделяют профазу, метафазу, анафазу и телофазу. В профазе происходит укорочение и утолщение хромосом вследствие их спирализации. В это время хромосомы двойные состоят из двух сестринских хроматид, связанных между собой. Одновременно со спирализацией хромосом исчезает ядрышко и фрагментируется (распадается на отдельные цистерны) ядерная оболочка. После распада ядерной оболочки хромосомы свободно и беспорядочно лежат в цитоплазме. В профазе центриоли (в тех клетках, где они есть) расходятся к полюсам клетки. В конце профазы начинает образовываться веретено деления, которое формируется из микротрубочек путем полимеризации белковых субъединиц.

В метафазе завершается образование веретена деления, которое состоит из микротрубочек двух типов: хромосомных, которые связываются с центромерами хромосом, и центросомных (полюсных), которые тянутся от полюса к полюсу клетки. Каждая двойная хромосома прикрепляется к микротрубочкам веретена деления. Хромосомы как бы выталкиваются микротрубочками в область экватора клетки, т. е. располагаются равном расстоянии от полюсов. Они лежат в одной плоскости и образуют так называемую экваториальную , или метафазную пластинку. В метафазе отчетливо видно двойное строение хромосом, соединенных только в области центромеры. В этот период легко подсчитывать число хромосом, изучать их морфологические особенности. В анафазе дочерние хромосомы с помощью микротрубочек веретена деления растягиваются к полюсам клетки. Во время движения дочерние хромосомы несколько изгибаются на подобие шпильки, концы которой повернуты в сторону экватора клетки. Таким образом, в анафазе хроматиды удвоенные в интерфазе хромосом расходятся к полюсам клетки. В этот момент в клетке находятся два диплоидных набора хромосом.

В телофазе происходят процессы, обратные тем, которые наблюдаются в профазе: начинается деспирализация (раскручивание) хромосом, они набухают и становятся плохо видимыми под микроскопом. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах возникают ядрышки. Разрушается веретено деления. На стадии телофазы происходит разделение цитоплазмы (цитотомия) с образованием двух клеток. В клетках животных плазматическая мембрана начинает впячиваться внутрь области, где располагался экватор веретена. В результате впячивания образуется непрерывная борозда, опоясывающая клетку по экватору и постепенно разделяющая одну клетку на две.

В клетках растений в области экватора из остатков нитей веретена деления возникает бочковидное образование — фрагмопласт . В эту область со стороны полюсов клетки устремляются многочисленные пузырьки комплекса Гольджи, которые сливаются друг с другом. Содержимое пузырьков образует клеточную пластинку, которая делит клетку на две дочерние, а мембрана пузырьков Гольджи образует недостающие цитоплазматические мембраны этих клеток. Впоследствии на клеточную пластинку со стороны каждой из дочерних клеток откладываются элементы клеточных оболочек. В результате митоза из одной клетки возникают две дочерние с тем же набором хромосом, что и в материнской клетке.

Биологическое значение митоза состоит, таким образом, в строго одинаковом распределении между дочерними клетками материальных носителей наследственности — молекул ДНК, входящих в состав хромосом. Благодаря равномерному распределению реплицированных хромосом происходит восстановление органов и тканей после повреждения. Митотическое деление клеток является также цитологического размножения организмов.

Мейоз или редукционное деление

Мейоз — это особый способ деления клеток, в результат которого происходит редукция (уменьшение) числа хромосом вдвое. Впервые он был описан В. Флеммингом в 1882 г. у животных и Э. Страсбургером в 1888 г. у растений. С помощью мейоза образуются гаметы. В результате редукции споры и половые клетки хромосомного набора в каждую гаплоидную спору и гамету по одной хромосоме из каждой пары хромосом, имеющихся в данной диплоидной клетке. В ходе дальнейшего процесса оплодотворения (слияния гамет) организм нового поколения получит опять диплоидный набор хромосом, т. е. кариотип организмов данного вида в ряду поколений остается постоянным. Таким образом, важнейшее значение мейоза заключается в обеспечении постоянства кариотипа в ряду поколений организмов данного вида при половом размножении.


Рис.2. Итоговая схема мейоза

ДНК и связанные с ней белки реплицируются во время интерфазы. Во время профазы ядерная оболочка разрушается и гомологичные хромосомы (каждая из которых состоит из двух хроматид, соединенных центромерой) располагаются попарно. В это время между четырьмя гомологичными хроматидами может происходить обмен участками. После метафазы I две исходно гомологичные хромосомы расходятся в разные клетки. При втором делении центромера расщепляется, и в результате в каждой новой клетке оказывается одна копия каждой хромосо мы.

Редукционное деление является, по сути, механизмом препятствующим непрерывному увеличению числа хромосом при слиянии гамет, без него при половом размножении число хромосом удваивалось бы в каждом новом поколении. Иными словами, благодаря мейозу поддерживает определенное и постоянное число хромосом во всех поколениях любого вида растений, животных и грибов. Другое важное значение мейоза заключается в обеспечении чрезвычайного разнообразия генетического состава гамет, как в результате кроссинговера, так и в результате различного сочетания отцовских и материнских хромосомпри их независимом расхождении в анафазе I мейоза, что обеспечивает появление разнообразного и разнокачественного потомства при половом размножении организмов.

Образование

Веретено деления — это… Описание, структура и функции

Веретено деления — это временная структура, образующаяся во время процессов митоза и мейоза, и обеспечивающая сегрегацию хромосом и деление клетки.

Деление клетки

Оно биполярно: система микротрубочек, образованная в пространстве между полюсами, по форме напоминает веретено. В области центромеры к кинетохорам хромосомы присоединяются микротрубочки веретена. По ним хромосомы двигаются к полюсам.

Строение

Веретено деления состоит из трех основных структурных элементов: микротрубочек, полюсов деления и хромосом. Полюса деления у животных организуются с помощью центросом, в которых содержатся центриоли. В случае отсуствия центросом (у растений, и в ооцитах у некоторых видов животных) веретено имеет широкие полюса и называется ацентросомальным. В образовании веретена участвует еще одна структура — моторные белки. Они принадлежат к динеинам и кинезинам.

Веретено деления — это биполярная структура. На обоих полюсах расположены центросомы — органеллы, которые являются центрами организации микротрубочек. В строении центросомы различают две центриоли, находящиеся в окружении множества различных белков. Конденсированные хромосомы, имеющие вид двух хроматид, скрепленных на участке центромеры, располагаются между полюсами. В области центромер имеются кинетохоры, к которым происходит прикрепление микротрубочек.

Формирование

Так как веретено деления — это структура, отвечающая за деление клетки, начало ее сборки происходит в профазе. У растений и в ооцитах, при отсутствии центросом, центром организации микротрубочек служит оболочка ядра. Микротрубочки приближаются к ядерной оболочке и в конце профазы заканчивается их ориентация, и образуется "профазное веретено" — ось будущего веретена деления.

Ввиду того, что в клетках животных именно центросома выполняет роль центра организации, началом формирования веретена деления является расхождение двух центросом в период профазы. Это возможно благодаря моторным белкам динеинам: они прикрепляются на внешнюю поверхность ядра, а также на внутреннюю сторону мембраны клетки. Группа динеинов, закрепленных на мембране, соединяется с астральными микротрубочками и они начинают движение по направлению к минус-концу, за счет чего и происходит разведение центросом по противоположным участкам мембраны клетки.

Видео по теме

Окончание сборки

Окончательное формирование веретена деления происходит на стадии прометафазы, после исчезновения мембраны ядра оно становится полноценным, ведь именно после этого центросомы и микротрубочки могут получить доступ к составляющим веретена.
Однако существует одно исключение: у почкующихся дрожжей формирование веретена деления происходит внутри ядра.

Образование нитей веретена деления и их ориентация невозможна без двух процессов: организации микротрубочек вокруг хромосом и присоединения их друг к другу на противоположных полюсах деления. Многие элементы, необходимые для окончательного формирования веретена деления, в том числе хромосомы и моторные белки, находятся внутри ядра клетки, а микротрубочки и, если это животная клетка, центросомы содержатся в цитоплазме, то есть, компоненты изолированы друг от друга. Именно поэтому образование веретена заканчивается только после исчезновения ядерной оболочки.

Присоединение хромосом

В образовании веретена деления участвует белок, а также многие другие структуры, и в клетках животных этот процесс хорошо изучен. В период профазы микротрубочки образуют вокруг центросом звездчатую структуру, которая расходится в радиальном направлении. После того как мембрана ядра разрушается, динамически нестабильные микротрубочки начинают активно зондировать эту область и кинетохоры хромосом могут закрепиться на них. Некоторая часть хромосом сразу оказывается на противоположных полюсах, остальные же сначала связываются с микротрубочками одного из полюсов, и уже потом начинают движение в сторону нужного полюса. Когда процесс закончен, хромосомы, уже связанные с каким-либо полюсом, начинают прикрепляться кинетохорами к микротрубочкам от противоположного полюса, таким образом, во время процесса метафазы к кинетохорам оказывается присоединено от десяти до сорока трубочек. Это образование называют кинетохорным пучком. Постепенно каждая из хромосом оказывается связанной с противоположным полюсом, и они формируют в центральной части веретена деления метафазную пластинку.

Второй вариант

Есть и другой сценарий, по которому может образоваться веретено деления. Это возможно и для клеток, имеющих центросомы, и для клеток, в которых они отсутствуют. В процессе участвует гамма-тубулиновый кольцевой комплекс, благодаря которому идет нуклеация коротких микротрубочек вокруг хромосом. Трубочки присоединяются к кинетохорам плюс-концом, после чего начинается полимеризация микротрубочек, то есть, регулируемый рост. Минус-концы "сливаются" и остаются у полюсов деления благодаря моторным белкам. Если в образовании веретена деления участвует пара центросом, это облегчает соединение микротрубочек, но процесс возможен и без них.

Поровну

Четкое разделение хромосом между двумя клетками, образуемыми во время деления, может произойти только в случае, если парные хроматиды своими кинетохорами присоединились к разным полюсам. Биполярное расхождение хроматид носит название амфитепического, однако существуют и другие варианты, возникающие во время того, как собирается веретено деления. Это монотепическое (один кинетохор присоединяется к одному полюсу) и синтепическое (оба кинетохора хромосомы соединяются с одним полюсом). При меротепическом один кинетохор захватывается сразу двумя полюсами. Стабильным является только обычное, биполярное скрепление, которое происходит вследствии сил натяжения от полюсов, остальные способы скрепления нестабильны и обратимы, но возможны из-за расположения кинетохор.

Комментарии

Похожие материалы

Финансы
Страховая компания — это что такое? Структура и функции

Страховая компания - это финансовый орган, предоставляющий страховые услуги физическим лицам, организациям различных форм собственности. Для того чтобы понять механизмы работы страховых компаний, необходимо расс…

Бизнес
Военно-космические силы России: описание, структура и состав

ВВС России начинают свою историю с 12 августа 1912 года — тогда приказом Генерального штаба создали штат воздухоплавательной части. И уже когда шла Первая мировая (1914-1918 гг.), авиация стала необходимым средством в…

Закон
Соотношение гражданского права с другими отраслями права: описание, примеры и функции

Взаимодействие между людьми - это сложный процесс, требующий постоянного регулирования. Этот тезис был выведен еще в древние времена, когда государства только начинали формироваться в виде целостных структур. Су…

Закон
Принуждение — это… Описание, виды и меры принуждения

Принуждение - это некое склонение, причем тогда, когда человек не хочет делать те или иные вещи. Подобные действия, которые понуждают людей к нежелательным или даже неприемлемым для них моментам, могут носить ка…

Закон
Орган судебной власти: понятие, структура и функции

Любое государство является сложным механизмом, который функционирует за счет своей внутренней структуры. Но далеко не всегда страны были в том виде, в котором все мы привыкли их видеть. Очень давно вместо государствен…

Закон
Структура и функции правовой культуры

Практически на протяжении всей истории своего развития человечество пыталось найти наиболее удачный и эффективный регулятор общественных отношений. Ведь взаимодействие социума происходит посредством объединения людей …

Закон
Армия Великобритании: основные рода войск, структура и функции

Армия любого государства - это щит, который призван защищать мирный быт граждан и территориальную целостность страны. Это социальное формирование существовало задолго до того, как люди придумали письменность, пр…

Здоровье
Кто такой онколог: описание, обязанности и функции

В мире существует огромное количество болезней, каждая из которых лечится соответствующим врачом. Сейчас трудно разобраться в узкой медицинской специализации, ведь кроме таких понятий, как «стоматолог», &l…

Здоровье
Отделы тонкого кишечника: описание, строение и функции

Как взаимодействуют между собой тонкий и толстый отдел кишечника? Каковы особенности работы представленных частей пищеварительного тракта? Какую роль отделы тонкого кишечника играют в процессе поглощения питательных в…

Здоровье
Органы равновесия и слуха: описание, строение и функции

Органы равновесия и слуха представляют собой комплекс структур, которые воспринимают вибрации, идентифицируют звуковые волны, передают гравитационные сигналы в мозг. Основные рецепторы располагаются в так называемой п…

Поиск Лекций

Изучить виды деления клеток. Занести в протокол таблицу «Типы деления клеток»

2. Рассмотреть на микропрепаратах кариокинез в клетках корешка лука и зарисовать.

3. Пользуясь учебной таблицей изучить схему мейотического деления клетки. Зарисовать в альбом.

4. Решить ситуационные задачи.

РАБОТА В ЛАБОРАТОРИИ

8.Литература :

Основная:

Типы и виды деления клеток.

Биология: В 2кн. Кн.1: Учеб. для мед.спец. вузов /под ред. В.Н.Ярыгина. 6-е изд. -М.:Высшая школа,2004.- С.55-61

2. Биология/А.А.Слюсарев, С.В.Жукова.- К.: Вища школа. Головное изд-во, 1992.- С.41-45

3. Биология. Руководство к практическим занятиям для студентов стоматологических факультетов под ред. акад. РАЕН проф. В.В. Маркиной. Изд. М. « ГЭОТАР- Медиа» 2010 г.

Дополнительная:

10. Медична біологія: Підручник /за ред.В.П.Пішака, Ю.І.Бажори.-Вінниця:Нова книга,2004.- С.26-28, 104-107, 118-125

11. Албертс Г., Грей Д., Льюис Дж. и др. Молекулярная биология клетки. М.: Мир,1986. – В 3 т, 2-е изд. Т.1.- С. 176-177

12. Граф логической структуры.

13. Конспект лекций.

ЦЕЛЬ (общая) : необходимо обратить внимание на общие вопросы цитологии и молекулярной биологии.

Занятие проводится с целью закрепления ранее изученного материала.

К коллоквиуму допускаются студенты, не имеющие пропусков лекций, практических занятий и имеющие оформленные и подписанные преподавателем протоколы.

Оценка итогового складывается из:

1. 40 тестовых заданий (0 — 1 баллa) – max 40 баллов.

2. 2 задач (0-5-15 баллов за каждую задачу) — max 30 баллов.

3. Теоретический вопрос (0-5-10 баллов) — max 10 баллов.

__________________________________max 80 баллов.

КРИТЕРИИ ОЦЕНОК:

БАЛЛ — ОТЛИЧНО

БАЛЛА — ХОРОШО

БАЛЛОВ — УДОВЛЕТВОРИТЕЛЬНО

©2015-2018 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Нарушение авторских прав и Нарушение персональных данных

Ядро. Деление ядра и клетки

Ядро, как правило, имеет шаровидную или овальную форму. В состав ядра входят: ядерная оболочка, кариоплазма, ядрышки и хроматин (хромосомы).

Ядерная оболочка образована двумя мембранами (наружной и внутренней). Отверстия в ядерной оболочке называют порами. Через них осуществляется обмен веществом между ядром и цитоплазмой.

Кариоплазма (нуклеоплазма, ядерный сок) – желеобразное внутреннее содержимое ядра.

Ядрышко – сферическая структура, функция которой – синтез рРНК.

Хроматин – неспирализованная молекула ДНК, связанная с белками.

Типы деления клетки

В таком виде ДНК присутствует в неделящихся клетках.

При этом возможно удвоение ДНК (репликация) и реализация заключенной в ДНК информации.

Хромосома – спирализованная молекула ДНК, связанная с белками. ДНК спирализуется перед делением клетки для более точного распределения генетического материала. На стадии метафазы каждая хромосома состоит из двух хроматид, образующихся в результате удвоения ДНК. Хроматиды соединены между собой в области первичной перетяжки, или центромеры. Центромера делит хромосому на два плеча.

Совокупность хромосом, содержащихся в ядре, называется хромосомным набором . Число хромосом в клетке и их форма постоянны для каждого вида живых организмов.

Функции ядра : хранение генетической информации, передача ее дочерним клеткам в процессе деления; контроль жизнедеятельности клетки.

Каждая клетка начинает свою жизнь, когда отделяется от материнской, и заканчивает существование, давая возможность появиться своим дочерним клеткам. Природой предусмотрено больше одного способа деления их ядра, в зависимости от их строения.

Способы деления клеток

Деление ядра зависит от типа клетки:

— Бинарное деление (встречается у прокариотов).

— Амитоз (прямой способ деления).

— Митоз (встречается у эукариотов).

— Мейоз (предназначен для деления половых клеток).

Типы деления ядра детерминированы природой и соответствуют строению клетки и той функции, которую она выполняет в макроорганизме либо сама по себе.

Бинарное деление

Наиболее часто этот тип встречается у прокариотических клеток. Заключается он в удвоении кольцевой молекулы ДНК. Бинарное деление ядра называется так потому, что из материнской клетки появляются две одинаковые по размеру дочерние.

После того как генетический материл (молекула ДНК или РНК) подготовлен соответствующим образом, то есть увеличен вдвое, из клеточной стенки начинает формироваться поперечная перегородка, которая постепенно сужается и разделяет цитоплазму клетки на две приблизительно одинаковые части.

Второй процесс деления называется почкованием, или неравномерным бинарным делением. В этом случае на участке клеточной стенки появляется выпячивание, которое постепенно растет. После того как размеры «почки» и материнской клетки сравняются, они разделятся. А участок клеточной стенки синтезируется снова.

Амитоз

Это деление ядра похоже на описанное выше, с той разницей, что отсутствует удвоение генетического материала. Этот способ был впервые описан биологом Ремаком. Данное явление встречается в патологически измененных клетках (опухолевое перерождение), а также является физиологической нормой для ткани печени, хрящей и роговицы.

Процесс деления ядра называется амитозом, потому что клетка сохраняет свои функции, а не утрачивает их, как во время митоза. Это объясняет патологические свойства, присущие клеткам с данным способом деления. Кроме того, прямое деление ядра проходит без веретена деления, поэтому хроматин в дочерних клетках распределен неравномерно. В последующем такие клетки не могут использовать митотический цикл. Иногда в результате амитоза образуются многоядерные клетки.

Митоз

Это непрямое деление ядра. Чаще всего встречается в эукариотических клетках. Главное отличие этот процесса заключается в том, что дочерние клетки и материнская содержат одинаковое число хромосом. Благодаря этому в организме поддерживается необходимое количество клеток, а также возможны процессы регенерации и роста. Первым митоз в животной клетке описал Флемминг.

Процесс деления ядра в данном случае разделяется на интерфазу и непосредственно митоз. Интерфаза – это состояние покоя клетки в промежутке между делениями. В ней можно выделить несколько фаз:

1. Пресинтетический период — клетка растет, в ней накапливаются белки и углеводы, активно синтезируется АТФ (аденозинтрифосфат).

2. Синтетический период – генетический материал увеличивается вдвое.

3. Постсинтетический период – клеточные элементы удваиваются, появляются белки, из которых состоит веретено деления.

Фазы митоза

Деление ядра эукариотической клетки – это процесс, для которого необходимо образование дополнительной органеллы – центросомы. Она расположена рядом с ядром, и основной ее функцией является формирование новой органеллы — веретена деления. Данная структура помогает равномерно распределить хромосомы между дочерними клетками.

Выделяют четыре фазы митоза:

1. Профаза: хроматин в ядре конденсируется в хроматиды, которые возле центромеры собираются, попарно образуя хромосомы. Ядрышки распадаются, к полюсам клетки расходятся центриоли. Образуется веретено деления.

2. Метафаза: хромосомы располагаются в линию, проходящую через центр клетки, формируя метафазную пластинку.

3. Анафаза: хроматиды из центра клетки расходятся к полюсам, а затем и центромера разделяется надвое. Такое движение возможно благодаря веретену деления, нити которого сокращаются и растягивают хромосомы в разные стороны.

4. Телофаза: формируются дочерние ядра. Хроматиды снова превращаются в хроматин, формируется ядро, а в нем – ядрышки. Заканчивается все разделением цитоплазмы и образованием клеточной стенки.

Значение митоза

Митотическое деление ядра – это способ поддержания постоянного набора хромосом. Дочерние клетки имеют такой же набор генов, как и материнская, и все характеристики, ей присущие. Митоз необходим для:

— роста и развития многоклеточного организма (из слияния половых клеток);

— перемещения клеток из нижних слоев в более верхние, а также замены клеток крови (эритроцитов, лейкоцитов, тромбоцитов);

— восстановления поврежденных тканей (у некоторых животных способности к регенерации являются необходимым условием для выживания, например, у морских звезд или ящериц);

— бесполого размножения растений и некоторых животных (беспозвоночных).

Мейоз

Механизм деления ядер половых клеток несколько отличается от соматических. В результате него получаются клетки, которые имеют в два раза меньше генетической информации, чем их предшественники. Это необходимо для того, чтобы поддерживать постоянное количество хромосом в каждой клетке организма.

Мейоз проходит в два этапа:

— редукционный этап;

— эквационный этап.

Правильное течение данного процесса возможно только в клетках с четным набором хромосом (диплоидным, тетраплоидным, гексапроидным и т. д.). Конечно, остается возможность прохождения мейоза и в клетках с нечетным набором хромосом, но тогда потомство может оказаться нежизнеспособным.

Именно этот механизм обеспечивает стерильность в межвидовых браках. Так как в половых клетках находятся различные наборы хромосом, это затрудняет их слияние и появление жизнеспособного или фертильного потомства.