Множеством называется совокупность определенных вполне различаемых объектов, рассматриваемых как единое целое.

Под множеством понимается некоторая совокупность объектов, объединенных по какому-то общему признаку.

Отдельные объекты, из которых состоит множество, называются элементами множества.

Множество обозначают символом A = {x }, где x - общее наименование элементов множества A . Часто множество записывают в виде A = {a , b , c , ...}, где в фигурных скобках указаны элементы множества A . Будем пользоваться обозначениями:

N - множество всех натуральных чисел;
Z - множество всех целых чисел;
Q - множество всех рациональных чисел;
R - множество всех действительных чисел;
C - множество всех комплексных чисел;
Z 0 - множество всех неотрицательных целых чисел.

a принадлежит множеству A .

Запись (или ) означает, что элемент a не принадлежит множеству A .

Подмно́жество в теории множеств - это понятие части множества.

Множество B , все элементы которого принадлежат множеству A , называется подмножеством множества A , и при этом записывают (или )

Всегда , так как каждый элемент множества, естественно, принадлежит A . Пустое множество, т. е. множество, не содержащее ни одного элемента, обозначим символом . Любое множество содержит пустое множество в качестве своего подмножества.

Если , то A и B называются равными множествами , при этом записывают A = B .

5. Операции над множествами: объединение множеств, свойства этой операции.

Объединение множеств А и В - это множество, состоящее из всех тех и только тех элементов, которые принадлежат хотя бы одному из множеств А или В, т.е. принадлежат А или принадлежат В.

объединением множеств A и B называется множество

6. Операции над множествами: пересечение множеств, свойства этой операции.

Пересечение множеств А и В - это множество, состоящее из всех тех и только тех элементов, которые принадлежат как множеству А, так и множеству В.

Пересечением подмножеств A и B называется множество

7. Элементы комбинаторики: Перестановки.

Все разнообразие комбинаторных формул может быть выведено из двух основных утверждений, касающихся конечных множеств – правило суммы и правило произведения .

Правило суммы : пусть имеется n попарно непересекающихся множеств A 1 , A 2 , …, A n , содержащих m 1 , m 2 , …, m n элементов соответственно. Число способов, которыми можно выбрать один элемент из всех этих множеств, равно m 1 + m 2 + … + m n .

Пример . Если на первой полке стоит X книг, а на второй Y , то выбрать книгу с первой или второй полки, можно X+Y способами.

Правило произведения : пусть имеется n множеств A 1 , A 2 , …, A n содержащих m 1 , m 2 , …, m n элементов соответственно. Число способов, которыми можно выбрать по одному элементу из каждого множества, т. е. построить кортеж (а 1 , а 2 , ..., а n ), где а i Î А i1 (i = 1, 2, …, n ), равно m 1 · m 2 · … · m n .

Пример . Если на первой полке стоит 5 книг, а на второй 10, то выбрать одну книгу с первой полки и одну со второй можно 5*10=50 способами.

Факториал. Так называют часто встречающуюся в практике функцию, определенную для целых неотрицательных чисел. Название функции происходит от английского математического термина factor - «сомножитель». Обозначается она . Для каждого целого положительного числа функция равна произведению всех целых чисел от 1 до . Например: . Для удобства полагают по определению . Особенно часто встречается факториал в комбинаторике. Например, количество способов выстроить школьников в одну шеренгу равняется

Определение. Если в некотором множестве переставлять местами элементы, оставляя неизменным их количество, то каждая полученная таким образом комбинация называется перестановкой .

Общее число перестановок из m элементов обозначается P m и вычисляется по формуле:

8. Элементы комбинаторики: Сочетания.

Определение. Если из т элементов составлять группы по п элементов в каждой, не обращая внимания на порядок элементов в группе, то получившиеся при этом комбинации называются сочетаниями из т элементов по п .

Общее число сочетаний находится по формуле:

9. Элементы комбинаторики: Размещения.

Урок и презентация на тему: "Множества и подмножества, примеры"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 9 класса
Мультимедийное учебное пособие для 9 класса "Алгебра за 10 минут"
Электронное учебное пособие для учащихся 7-9 классов "Понятная алгебра"

Множества и подмножества

Ребята, мы переходим к изучению очень важной темы "Множества". Множества нам будут встречаться постоянно, в курсах математики за более старшие классы и в 9 классе почти все темы тесно связанны с данным понятием. Поэтому постарайтесь хорошо усвоить данную тему.

Так что же такое множество?
Множествами занимается специальный раздел математики теория множеств. Множество – одно из главных и фундаментальных понятий. Определения у него нет, но давайте попробуем понять, что же такое множество? Множество – это совокупность различных элементов, их можно посчитать, сгруппировать. Примерами множеств могут служить буквы алфавита – множество, состоящее из 33 элементов. Множество яблок на дереве – количество яблок на дереве, конечно и его можно посчитать и занумеровать. Примеров множеств можно придумать очень много. Попробуйте сами придумать какой-нибудь пример.
В математике множество обозначается в фигурных скобках {,}. Например, множество первых пяти букв английского алфавита обозначат вот так: {A,B,C,D,E}. Если записать это множество в другом порядке, оно не изменится.
Математика настолько интересный предмет, что у нас есть понятие пустого множества и бесконечного множества. Пустое множество – множество, в котором нет ни одного элемента, его обозначают без скобок и используют значок Ø. Бесконечное множество, наверняка понятно из названия – множество, в котором бесконечное количество элементов, например множество всех чисел.
Множества можно описать различными словами, например, {10, 12, 16, 18, ..., 96 ,98} – это множество четных двузначных чисел. Многоточие используется, когда элементов очень много и все их записать сложно, но при этом запись множества должна быть понятной, и чтобы по ней можно было определить, что это за множество.
$ \{x| -2

Существуют специальные обозначения множеств. Например, для множества натуральных чисел. Ребята, а вы помните, как это множество обозначается?
Для обозначения принадлежности элемента множеству используется специальный знак $ϵ$. Запись $2 ϵ \{2,4,6,8... \}$. Читается так: "Два принадлежит множеству четных чисел".

Пример.
Некоторое множество состоит из корней уравнения $x^3+3x^2+2x=0$. Найдите элементы этого множества и перечислите все возможные варианты расположения элементов.

Решение.
Давайте решим уравнение, вынесем х за скобки:
$x(x^2+3x+2)=0$
$x(x+2)(x+1)=0$

Тогда решения нашего уравнения: $x=0;-2;-1$ – это и есть элементы искомого множества.
Давайте запишем возможные варианты расположения элементов:
{-2, -1, 0}; {-2, 0, -1}; {-1, 0, 2}; {-1, 2, 0}; {0, -2, -1}; {0, -1, -2}.

Пример .
Опишите данные множества.

$а) \{1,2,3,4,...,9,10 \} \\ б) \{1,8,27,64 ... \}$
Решение.
а) Множество натуральных чисел от 1 до 10.
б) Множество всех значений кубов натуральных чисел.

Пример .
Решив неравенство, записать его решения в виде числового промежутка:

А) $\{x^2 | x^2+1>0\}$
б) $\{x| 1/x в) $\{x |x^2+7x+12
Решение.
а) $x^2+1>0$ больше нуля при всех х. Тогда числовой промежуток запишется в виде: $(-∞;+∞)$.
б) 1/x в) $x^2+7x+12

Подмножество

Если из нашего множества выбрать несколько элементов и сгруппировать их отдельно – то это будет подмножество нашего множества. Комбинаций, из которых можно получить подмножество много, количество комбинаций лишь зависит от количества элементов в исходном множестве.
Пусть у нас есть два множества А и Б. Если каждый элемент множества Б является элементом множества А, то множество Б называется подмножеством А. Обозначается: Б ⊂ А. Пример.
Сколько существует подмножеств множества А={1, 2, 3}.
Решение.
Подмножества состоя из элементов нашего множества. Тогда у нас существует 4 варианта по количеству элементов в подмножестве:
Подмножество может состоять из 1 элемента, из 2, 3 элементов и может быть пустым. Давайте последовательно запишем наши элементы.
Подмножество из 1 элемента: {1}, {2}, {3}.
Подмножество из 2 элементов: {1, 2}; {1, 3}; {2, 3}.
Подмножество из 3 элементов: {1, 2, 3}.

Не забудем, что пустое множество так же является подмножеством нашего множества. Тогда получаем, что у нас есть 3+3+1+1=8 подмножеств.

Задачи для самостоятельного решения

1. Найдите множество решений уравнения: $2x^3+8x^2+6x=0$. Перечислите все возможные варианты расположения элементов.
2. Опишите множество:
$a) \{1, 3, 5, 7...99 \} \\b) \{1, 4, 7, 10, 13, 16 \} \\ c) \{5, 10, 15, 20 ... 995 \}$
3. Сколько существует подмножеств множества А={3, 4, 5, 6}.

«Под множеством мы понимаем объединение в одно целое определенных, вполне различимых объектов нашей интуиции или нашей мысли» - так описал понятие «множество» Георг Кантор, основатель теории множеств.
Основные предпосылки канторовской теории множеств сводятся к следующему:
Множество может состоять из любых различимых объектов.
Множество однозначно определяется набором составляющих его объектов.
Любое свойство определяет множество объектов, которые этим свойством обладают.

Если х - объект, Р - свойство, Р(х) - обозначение того, что х обладает свойством Р, то через {х|Р(х)} обозначают весь класс объектов, обладающих свойством Р. Объекты, составляющие класс или множество, называют элементами класса или множества.

Термин «множество » употребляется как синоним понятий совокупность, собрание, коллекция некоторых элементов. Так, можно говорить о:
а) множестве пчёл в улье,
б) множестве точек отрезка,
в) множестве вершин квадрата или о множествах его сторон и диагоналей,
г) множестве студентов в аудитории и т.д.
В приведённых примерах в случаях а), в)-г) соответствующие множества состоят из определённого конечного числа предметов, такие множества называются конечными . Множество точек отрезка (пример б)) пересчитать невозможно, поэтому такие множества называются бесконечными . Множество, не содержащее ни одного элемента, называется пустым множеством.

Наиболее простая форма задания множества — перечисление его элементов, например А={4, 7, 13} (множество А состоит из трёх элементов — целых чисел 4, 7, 13). Другая часто применяемая форма задания — указание свойств элементов множества, например A = {x| x^2 ≤ 4} — множество чисел х, удовлетворяющих указанному условию.

Множества обычно обозначаются большими буквами А, В, С,…., а их элементы — малыми: а, в, с,… Запись а ∈ А (читается: а принадлежит А) или A ∋ a (читается: А содержит а) означает, что а есть элемент множества А. Пустое множество обозначается значком Ø.

Если каждый элемент множества В является также элементом множества А, множество В называется подмножеством множества А (обозначение — B ⊆ A или A ⊇ B).

Каждое множество является своим подмножеством (это самое «широкое» подмножество множества). Пустое множество является подмножеством любого множества (это самое «узкое» подмножество). Любое другое подмножество множества А содержит хотя бы один элемент множества А, но не все его элементы. Такие подмножества называются истинными, или собственными подмножествами. Для истинных подмножеств множества А применяется обозначение B ⊂ A или A ⊃ B. Если одновременно B ⊆ A и A ⊆ B, т.е каждый элемент множества В принадлежит А, и в то же время каждый элемент А принадлежит В, то А и В, очевидно, состоят из одних и тех же элементов и, следовательно, совпадают. В этом случае применяется знак равенства множеств: A = B. (Символы ∈, ∋, ⊂, ⊃, ⊆, ⊇ называются символами включения).

Геометрически множества обычно изображаются как некоторые множества точек плоскости. В любой имеющей смысл задаче обычно рассматриваются подмножества некоторого «наибольшего» множества U, которое называют универсальным множеством. Так, на рис. 1 изображено универсальное множество U и два его подмножества — множества А и В, B ⊂ A. Сами картинки типа рис. 1 называются диаграммами Эйлера-Венна .

Во многих множествах можно выделить более мелкие группы элементов, объединенные своим общим свойством. Например, во множестве натуральных чисел можно выделить подмножество четных чисел, а также подмножество нечетных чисел, или подмножество чисел не больше 100 и т. п.

В терминологии теории множеств говорят, что множество B является подмножеством множества A, если каждый элемент B является в то же время и элементом множества A. Обозначается это знаком включения: B ⊂ A.

Из подмножества какого-либо множества можно выделить свое подмножество. Например, среди учеников класса можно выделить подмножество девочек, а среди девочек выделить отличниц. Тогда можно записать так:

Это значит, что множество C включено в B, а B включено в A.

Если множества обозначить кругами, то внутри круга A будет находиться круг B, а внутри него круг C. Подобные рисунки называют диаграммами Эйлера-Венна.

Если два множества равны, то для них выполняются соотношения A ⊂ B и B ⊂ A.

Если задано, что B ⊂ A, и какой-то элемент x принадлежит B (x ∈ B), то это значит, что также x ∈ A. Однако, если известно, что x ∈ A, то нельзя делать однозначный вывод о том, что этот элемент принадлежит B. Это может быть и не так.

Два множества A и B равны, если они состоят из одних и тех же элементов.

Из этого принципа следует, что для любых двух различных множеств всегда найдется некоторый объект, являющийся элементом одного из них и не являющийся элементом другого. Так как пустые совокупности не содержат элементов, то они не различимы и поэтому пустое множество – единственно.

Подмножества. Определение равенства множеств можно сформулировать иначе, используя понятие подмножества.

Определение. Множество A называется подмножеством множества B , если каждый элемент A является элементом B.

Следствие 1. Очевидно,
для любого множества A, т.к. каждый элемент из A есть элемент из A.

Следствие 2. Для любого множества A,
, ибо если бы пустое множество не являлось подмножеством A, то в пустом подмножестве существовали бы элементы, не принадлежащие A. Однако пустое множество не содержит вообще ни одного элемента.

Если
, то пишут
, и если
, то A – собственное подмножество B.

Понятие подмножества множеств позволяет легко формализовать понятие равенства двух множеств.

Утверждение. Для любых A и B

Логическую эквивалентность, определяемую выражением (1.1) используют как основной способ доказательства равенства двух множеств.

Замечание . Отношение включения  обладает рядом очевидных свойств:

(рефлексивность);

(транзитивность).

Для любого множества X можно определить специальное множество всех подмножеств множества X, которое называется булеаном
, которое включает в себя само множество X, все его подмножества и пустое множество
.

Пример. Пусть
– это множество, состоящее из трех элементов. Тогда булеан(X) это множество:

Собственными подмножествами (X) являются следующие множества:

{a},{b},{c},{a,b},{b,c},{a,c}.

В общем случае, если множество X содержит n элементов, то множество его подмножеств (X) состоит из элементов.

Операции на множествах.

Пусть U – универсальное множество,
. Тогда для множеств X,Y можно определить операции
.

Определение . Объединением множеств X и Y называется множество
, состоящее из элементов, входящих хотя бы в одно из множеств (X или Y):

Рис. 1.1 – Объединение множеств Рис. 1.2 – Пересечение множеств


Определение . Пересечением множеств X и Y называется множество
, состоящее из элементов, входящих в X и в Y одновременно:

Определение . Разностью множеств X и Y называется множество
, состоящее из элементов, входящих в множество X, но не входящих в Y:

Рис. 1.3 – Разность множеств
Рис. 1.4 – Симметрическая

разность множеств

Определение . Симметрической разностью двух множеств X и Y называется множество
, состоящее из элементов множества X и элементов множества Y, за исключением элементов, являющихся общими для обоих множеств:

Определение . Для любого множества
дополнением множествадо U называется такое множество, что:

Рис. 1.5 – Дополнение множества X до U

На рис. 1.1  1.5 представлены диаграммы Венна, наглядно демонстрирующие результаты операций
.

Дополнение множества иногда обозначается
. Операции
связаны между собой законами де Моргана:

, (1.7)

. (1.8)

В справедливости законов де Моргана легко убедиться самостоятельно.

В таблице 1.1 представлены основные свойства операций над множествами.

Таблица 1.1

Свойства операций

Объединение, пересечение, дополнение

коммутативность

,

ассоциативность

дистрибутивность

идемпотентность

,
,
,
,
,

теоремы де Моргана

,

инволюция

Операции объединения и пересечения можно обобщить. Пусть
– множество индексов,
– семейство подмножеств множества X.

Определение. Семейство подмножеств
множества X, для которых
, называетсяразбиением множества X, если выполняются следующие два условия:

,

Определение. Семейство подмножеств
множества X называетсяпокрытием множества X, если:
.

Определение. Класс K подмножеств из U называется алгеброй, если:

1.
;

2. из того, что
следует, что
;

3. из того, что
следует, что
.

Пример. Пусть
, тогда класс
образует алгебру.

Определение. Класс F подмножеств из U образует -алгебру, если:

1.
;

2. из того, что
следует
;

3. из того, что
,
следует, что
.

Пример. Множество всех подмножеств U образует -алгебру, т.е.(U) – -алгебра.